1
|
Rose EM, Scofield AJ, Wenstrom AM, Stennette KA, Shank BD, Ball GF. Male and female red-cheeked cordon bleus sing similar yet individualistic songs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1909-1915. [PMID: 38456733 PMCID: PMC10924675 DOI: 10.1121/10.0025236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Birdsong is an excellent system for studying complex vocal signaling in both males and females. Historically, most research in captivity has focused only on male song. This has left a gap in our understanding of the environmental, neuroendocrine, and mechanistic control of female song. Here, we report the overall acoustic features, repertoire, and stereotypy of both male and female Red-Cheeked Cordon Bleus (Uraeginthus bengalus) (RCCBs) songs in the lab. We found few sex differences in the acoustic structure, song repertoire, and song stereotypy of RCCBs. Both sexes had similar song entropy, peak frequency, and duration. Additionally, individuals of both sexes sang only a single song type each and had similar levels of song and syllable stereotypy. However, we did find that female RCCBs had higher song bandwidth but lower syllable repertoires. Finally, and most strikingly, we found highly individualistic songs in RCCBs. Each individual produced a stereotyped and unique song with no birds sharing song types and very few syllable types being shared between birds of either sex. We propose that RCCBs represent a promising species for future investigations of the acoustic sex differences in song in a lab environment, and also for understanding the evolutionary driving forces behind individualistic songs.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Avery J Scofield
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
| | - Autumn M Wenstrom
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
| | - Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin D Shank
- Department of Physics, Hope College, Holland, Michigan 49423, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Rose EM, Prior NH, Ball GF. The singing question: re-conceptualizing birdsong. Biol Rev Camb Philos Soc 2021; 97:326-342. [PMID: 34609054 DOI: 10.1111/brv.12800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023]
Abstract
Birdsong has been the subject of broad research from a variety of sub-disciplines and has taught us much about the evolution, function, and mechanisms driving animal communication and cognition. Typically, birdsong refers to the specialized vocalizations produced by oscines. Historically, much of the research on birdsong was conducted in north temperate regions (specifically in Europe and North America) leading to multiple biases. Due to these historic biases these vocalizations are generally considered to be highly sexually dimorphic, heavily shaped by sexual selection and essential for courtship and territoriality. Song is also typically defined as a learned trait shaped by cultural evolution. Together, this framework focuses research specifically on males, particularly during the north temperate breeding season - reflecting and thereby reinforcing this framework. The physiological underpinnings of song often emphasize the role of the hypothalamic-pituitary-gonadal axis (associated with breeding changes) and the song control system (underlying vocal learning). Over the years there has been great debate over which features of song are essential to the definition of birdsong, which features apply broadly to contexts outside males in the north temperate region, and over the importance of having a definition at all. Importantly, the definitions we use can both guide and limit the progress of research. Here, we describe the history of these definitions, and how these definitions have directed and restricted research to focus on male song in sexually selected contexts. Additionally, we highlight the gaps in our scientific knowledge, especially with respect to the function and physiological mechanisms underlying song in females and in winter, as well as in non-seasonally breeding species. Furthermore, we highlight the problems with using complexity and learning as dichotomous variables to categorize songs and calls. Across species, no one characteristic of song - sexual dimorphism, seasonality, complexity, sexual selection, learning - consistently delineates song from other songbird vocal communication. We provide recommendations for next steps to build an inclusive information framework that will allow researchers to explore nuances in animal communication and promote comparative research. Specifically, we recommend that researchers should operationalize the axis of variation most relevant to their study/species by identifying their specific question and the variable(s) of focus (e.g. seasonality). Researchers should also identify the axis (axes) of variation (e.g. degree of control by testosterone) most relevant to their study and use language consistent with the question and axis (axes) of variation (e.g. control by testosterone in the seasonal vocal production of birds).
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| | - Nora H Prior
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, 4094 Campus Dr., College Park, MD, 20742, U.S.A.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, 0219 Cole Student Activities Building, 4090 Union Drive, College Park, MD, 20742, U.S.A
| |
Collapse
|
3
|
Moskát C, Hauber ME. Male common cuckoos use a three-note variant of their "cu-coo" call for duetting with conspecific females. Behav Processes 2021; 191:104472. [PMID: 34363910 DOI: 10.1016/j.beproc.2021.104472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Duetting is a coordinated form of acoustic communication with participants uttering calls or songs simultaneously and/or sequentially. Duetting is often observed in pair-bonded species, with mated females and males both contributing to the communal vocal output. We observed duetting between the sexes in the common cuckoo (Cuculus canorus), an obligate brood parasitic species without known pair formation. Specifically, female cuckoos use their sex-specific bubbling calls for duetting, while male cuckoos use a 3-note variant ("cu-cu-coo") of their typical and well-known 2-note ("cu-coo") territorial advertisement calls. The maximum frequency of the elements in the male's 3-note variants was higher relative to the 2-note calls, while durations of both the elements and the inter-element intervals were shorter. The vast majority (95 %) of the 3-note calling was detected together with the bubbling call, implying an intersexual duetting function, with the female calls preceding these male calls in 67 % of cases. The two call types in duetting followed each other rapidly (mean response time of females was 1.30 ± 0.71 SD s, and 0.76 ± 0.53 SD s in males), and typically overlapped with each other (95 %). Frequently (90 %), the male call was repeated 2-3 times, whereas the female call was repeated less frequently (9%). Our results are consistent with a main function of duetting in intersexual communication and coordination between female and male cuckoos.
Collapse
Affiliation(s)
- Csaba Moskát
- MTA-ELTE-MTM Ecology Research Group of the Eötvös Loránd Research Network, A Joint Research Group of the Biological Institute of the Eötvös Loránd University, Pázmány P. st. 1/C, H‑1117 Budapest, Hungary and the Hungarian Natural History Museum, Budapest, Hungary.
| | - Márk E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Austin VI, Dalziell AH, Langmore NE, Welbergen JA. Avian vocalisations: the female perspective. Biol Rev Camb Philos Soc 2021; 96:1484-1503. [PMID: 33797176 DOI: 10.1111/brv.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Research on avian vocalisations has traditionally focused on male song produced by oscine passerines. However, accumulating evidence indicates that complex vocalisations can readily evolve outside the traditional contexts of mate attraction and territory defence by male birds, and yet the previous bias towards male song has shaped - and continues to shape - our understanding of avian communication as a whole. Accordingly, in this review we seek to address this imbalance by synthesising studies on female vocalisations from across signalling contexts throughout the Aves, and discuss the implications of recent empirical advances for our understanding of vocalisations in both sexes. This review reveals great structural and functional diversity among female vocalisations and highlights the important roles that vocalisations can play in mediating female-specific behaviours. However, fundamental gaps remain. While there are now several case studies that identify the function of female vocalisations, few quantify the associated fitness benefits. Additionally, very little is known about the role of vocal learning in the development of female vocalisations. Thus, there remains a pressing need to examine the function and development of all forms of vocalisations in female birds. In the light of what we now know about the functions and mechanisms of female vocalisations, we suggest that conventional male-biased definitions of songs and calls are inadequate for furthering our understanding of avian vocal communication more generally. Therefore, we propose two simple alternatives, both emancipated from the sex of the singer. The first distinguishes song from calls functionally as a sexually selected vocal signal, whilst the second distinguishes them mechanistically in terms of their underlying neurological processes. It is clear that more investigations are needed into the ultimate and proximate causes of female vocalisations; however, these are essential if we are to develop a holistic epistemology of avian vocal communication in both sexes, across ecological contexts and taxonomic divides.
Collapse
Affiliation(s)
- Victoria I Austin
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anastasia H Dalziell
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.,Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, U.S.A
| | - Naomi E Langmore
- Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, Canberra, ACT, 2601, Australia
| | - Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|