1
|
Tomasek M, Soller K, Dufour V, Jordan A. Differences in inhibitory control in two species of Tanganyikan bower-building cichlids contrasting in building flexibility. Ecol Evol 2024; 14:e11406. [PMID: 38846708 PMCID: PMC11154817 DOI: 10.1002/ece3.11406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
A central challenge in understanding the evolution of cognition is the ability to compare a set of species differing in a trait of interest while being ecologically and phylogenetically close. Here, we examine whether differences in bower-building flexibility are related to differences in cognitive flexibility between two Tanganyikan cichlids. Cognitive flexibility enables animals to modify their decision rules when faced with new situations, and inhibitory control, the ability to inhibit a normally favoured response, is an essential component of this capacity. We tested male Aulonocranus dewindti and Cyathopharynx furcifer in a choice-against-preference paradigm. Both species clean their bowers of foreign objects and we found that both preferred to remove a snail shell over a stone. We tested their ability to modify this preference and learned to preferably select the stone instead of the shell. Although neither species showed clear learning of the new preference rule, both demonstrated inhibitory control through increased decision times and manipulations of the objects when selecting the stone. Specifically, A. dewindti, the species exhibiting greater behavioural flexibility in the construction of their bowers, selected the stone in fewer trials than C. furcifer, providing support for a link between behavioural flexibility in bower construction and cognitive flexibility.
Collapse
Affiliation(s)
- Maëlan Tomasek
- LAboratoire de Psychologie Sociale et CognitiveUMR6024, CNRS, UCAClermont‐FerrandFrance
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| | - Katinka Soller
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| | - Valérie Dufour
- LAboratoire de Psychologie Sociale et CognitiveUMR6024, CNRS, UCAClermont‐FerrandFrance
| | - Alex Jordan
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| |
Collapse
|
2
|
Culbert BM, Barnett JB, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Balshine S. Colorful facial markings are associated with foraging rates and affiliative relationships in a wild group-living cichlid fish. Curr Zool 2024; 70:70-78. [PMID: 38476131 PMCID: PMC10926260 DOI: 10.1093/cz/zoac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/11/2022] [Indexed: 03/14/2024] Open
Abstract
Many animals use color to signal their quality and/or behavioral motivations. Colorful signals have been well studied in the contexts of competition and mate choice; however, the role of these signals in nonsexual, affiliative relationships is not as well understood. Here, we used wild social groups of the cichlid fish Neolamprologus pulcher to investigate whether the size of a brightly colored facial patch was related to 1) individual quality, 2) social dominance, and/or 3) affiliative relationships. Individuals with larger patches spent more time foraging and tended to perform more aggressive acts against conspecific territory intruders. We did not find any evidence that the size of these yellow patches was related to social rank or body size, but dominant males tended to have larger patches than dominant females. Additionally, patch size had a rank-specific relationship with the number of affiliative interactions that individuals engaged in. Dominant males with large patches received fewer affiliative acts from their groupmates compared to dominant males with small patches. However, subordinates with large patches tended to receive more affiliative acts from their groupmates while performing fewer affiliative acts themselves. Taken together, our results suggest that patch size reflects interindividual variation in foraging effort in this cichlid fish and offer some of the first evidence that colorful signals may shape affiliative relationships within wild social groups.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Tomasek M, Stark M, Dufour V, Jordan A. Cognitive flexibility in a Tanganyikan bower-building cichlid, Aulonocranus dewindti. Anim Cogn 2023; 26:1959-1971. [PMID: 37851187 PMCID: PMC10770232 DOI: 10.1007/s10071-023-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Cognitive flexibility, the ability to modify one's decision rules to adapt to a new situation, has been extensively studied in many species. In fish, though, data on cognitive flexibility are scarce, especially in the wild. We studied a lekking species of cichlid fish in Lake Tanganyika, Aulonocranus dewindti. Males create sand bowers as spawning sites and maintain them by removing any objects falling into it. In the first part of our experiment, we investigated the existence of spontaneous decision rules for the maintenance of the bowers. We showed that if a snail shell and a stone are placed in their bower, fish prefer to remove the shell first. In the second phase of our experiment, we took advantage of this spontaneous decision rule to investigate whether this rule was flexible. We tested five individuals in a choice against preference task, in which the fish had to modify their preference rule and remove the stone first to be allowed to then remove the shell and have a clean bower. While there was no overall trend towards flexibility in this task, there was variation at an individual level. Some individuals increased their preference for removing the shell first, deciding quickly and with little exploration of the objects. Others were more successful at choosing against preference and showed behaviours suggesting self-regulatory inhibition abilities. Bower-building cichlids could therefore be a promising model to study cognitive flexibility, and other aspects of animal cognition in the wild.
Collapse
Affiliation(s)
- Maëlan Tomasek
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France.
- University of Konstanz, 78464, Constance, Germany.
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany.
| | - Midori Stark
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| | - Valérie Dufour
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France
| | - Alex Jordan
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| |
Collapse
|
4
|
La Loggia O, Rüfenacht A, Taborsky B. Fish can infer relations between colour cues in a non-social learning task. Biol Lett 2022; 18:20220321. [PMID: 36382372 PMCID: PMC9667135 DOI: 10.1098/rsbl.2022.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Transitive inference (TI) describes the ability to infer relationships between stimuli that have never been seen together before. Social cichlids can use TI in a social setting where observers assess dominance status after witnessing contests between different dyads of conspecifics. If cognitive processes are domain-general, animals should use abilities evolved in a social context also in a non-social context. Therefore, if TI is domain-general in fish, social fish should also be able to use TI in non-social tasks. Here we tested whether the cooperatively breeding cichlid Neolamprologus pulcher can infer transitive relationships between artificial stimuli in a non-social context. We used an associative learning paradigm where the fish received a food reward when correctly solving a colour discrimination task. Eleven of 12 subjects chose the predicted outcome for TI in the first test trial and five subjects performed with 100% accuracy in six successive test trials. We found no evidence that the fish solved the TI task by value transfer. Our findings show that fish also use TI in non-social tasks with artificial stimuli, thus generalizing past results reported in a social context and hinting toward a domain-general cognitive mechanism.
Collapse
Affiliation(s)
- Océane La Loggia
- Department for Behavioural Ecology, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Bern, Switzerland
| | - Angélique Rüfenacht
- Department for Behavioural Ecology, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Bern, Switzerland
| | - Barbara Taborsky
- Department for Behavioural Ecology, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Bern, Switzerland
| |
Collapse
|
5
|
Reyes-Contreras M, Taborsky B. Stress axis programming generates long-term effects on cognitive abilities in a cooperative breeder. Proc Biol Sci 2022; 289:20220117. [PMID: 35582802 PMCID: PMC9114936 DOI: 10.1098/rspb.2022.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to flexibly adjust behaviour to social and non-social challenges is important for successfully navigating variable environments. Social competence, i.e. adaptive behavioural flexibility in the social domain, allows individuals to optimize their expression of social behaviour. Behavioural flexibility outside the social domain aids in coping with ecological challenges. However, it is unknown if social and non-social behavioural flexibility share common underlying cognitive mechanisms. Support for such shared mechanism would be provided if the same neural mechanisms in the brain affected social and non-social behavioural flexibility similarly. We used individuals of the cooperatively breeding fish Neolamprologus pulcher that had undergone early-life programming of the hypothalamic-pituitary-interrenal axis by exposure to (i) cortisol, (ii) the glucocorticoid receptor antagonist mifepristone, or (iii) control treatments, and where effects of stress-axis programming on social flexibility occurred. One year after the treatments, adults learned a colour discrimination task and subsequently, a reversal-learning task testing for behavioural flexibility. Early-life mifepristone treatment marginally enhanced learning performance, whereas cortisol treatment significantly reduced behavioural flexibility. Thus, early-life cortisol treatment reduced both social and non-social behavioural flexibility, suggesting a shared cognitive basis of behavioural flexibility. Further our findings imply that early-life stress programming affects the ability of organisms to flexibly cope with environmental stressors.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| |
Collapse
|
6
|
Taborsky B. The Evolution of Social Behaviour. Ethology 2021. [DOI: 10.1111/eth.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|