1
|
Amiri A, Bandani AR. Callosobruchus maculatus males and females respond differently to grandparental effects. PLoS One 2023; 18:e0295937. [PMID: 38134132 PMCID: PMC10745144 DOI: 10.1371/journal.pone.0295937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we used the cowpea weevil Callosobruchus maculatus (Coleoptera: Chrysomelidae) and two essential oils (mint and rosemary) to investigate the effect of the parents (F0) exposure to a sublethal dose of essential oil on grand offspring (F2) encountering the same essential oil. Then we evaluated biological parameters, including immature development time, sex ratio, adult emergence, egg number, egg hatch, longevity, and mating behaviors in three generations (F0, F1, and F2). Results showed when F0 experienced essential oil in the embryonic stage, parental and grandparental effects were more severe than adulthood experiences. Also, grandparental effects increased or decreased reactions of F2 generation when faced with a similar essential oil, depending on grand offspring sex. For example, when grandparents experienced rosemary essential oil in the embryonic stage, they produced more tolerant female grand offspring with a better ability to cope with the same essential oil (increased adult longevity and egg number). However, male grandoffspring were more sensitive (had a higher mortality percentage and less copulation success). Grandparental effects of exposure to mint essential oil diminished female grand offspring longevity and improved male copulation behavior parameters such as increased copulation duration and decreased rejection by females. In all, grandparental effects were different in male and female grand offspring based on the essential oil type experienced by F0.
Collapse
Affiliation(s)
- Azam Amiri
- College of Geography and Environmental Planning. University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali R. Bandani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Mogilicherla K, Roy A. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Front Genet 2023; 13:1044980. [PMID: 36685945 PMCID: PMC9853188 DOI: 10.3389/fgene.2022.1044980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Collapse
|
3
|
Distribution of invasive versus native whitefly species and their pyrethroid knock-down resistance allele in a context of interspecific hybridization. Sci Rep 2022; 12:8448. [PMID: 35589927 PMCID: PMC9120063 DOI: 10.1038/s41598-022-12373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion success of a species in an agrosystem is greatly influenced by environmental factors such as the use of insecticides, by the intrinsic evolutionary capabilities of the species, and also by interactions with resident species. On the island of La Réunion, the successive invasions of MEAM1 and MED whitefly species over the last 20 years have not only led an increased use of insecticides, but have also challenged the resident IO species. To trace the evolution of the 3 species, and the distribution of the kdr mutation (resistance to pyrethroid) in the para-type voltage-gated sodium channel, we genotyped 41 populations (using neutral nuclear markers) and look at the prevalence of the kdr allele. MEAM1 was predominantly present in agrosystems showing quasi fixation of the resistant kdr allele whereas IO was mainly in natural environments and did not have any resistant allele. Hybridization between the two former species was detected in low frequency but has not led to introgression of resistant alleles in the resident species so far. MED showed a limited distribution in agrosystems but all individuals displayed a resistant allele. These highly contrasting patterns of distribution and resistant mutations between invasive and resident whitefly species are further discussed.
Collapse
|
4
|
Nyamukondiwa C, Machekano H, Chidawanyika F, Mutamiswa R, Ma G, Ma CS. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100878. [PMID: 35093582 DOI: 10.1016/j.cois.2022.100878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Global pest invasions have significantly increased in recent years. These invasions together with climate warming directly impact agriculture. Tropical climates feature extreme weather events, including high temperatures and seasonal droughts. Thus, successful invasive pests in tropics have to adapt to these extreme climate features. The intrinsic factors relevant to tropical invasion of insects have been explored in many studies, but the knowledge is rather dispersed in contemporary literature. Here, we reviewed the potential biophysical characters of successful invasive pests' adaption to tropical environments including [1] inherent high basal stress tolerance and advanced life-history performances [2], phenotypic plasticity [3], rapid evolution to environmental stress, polyphagy, diverse reproductive strategies and high fecundity. We summarised how these traits and their interactive effects enhance pest invasions in the tropics. Comprehensive understanding of how these characters facilitate invasion improves models for predicting ecological consequences of climate change on invasive pest species for improved pest management.
Collapse
Affiliation(s)
- Casper Nyamukondiwa
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa.
| | - Honest Machekano
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Frank Chidawanyika
- International Centre of Insect Physiology and Ecology (ICIPE), P.O Box 30772-0 010 0, Nairobi, Kenya; Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; Tugwi-Mukosi Multidisciplinary Research Institute, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China
| | - Chu-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
5
|
Buss N, Swierk L, Hua J. Amphibian breeding phenology influences offspring size and response to a common wetland contaminant. Front Zool 2021; 18:31. [PMID: 34172063 PMCID: PMC8228996 DOI: 10.1186/s12983-021-00413-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Increases in temperature variability associated with climate change have critical implications for the phenology of wildlife across the globe. For example, warmer winter temperatures can induce forward shifts in breeding phenology across taxa (“false springs”), which can put organisms at risk of freezing conditions during reproduction or vulnerable early life stages. As human activities continue to encroach on natural ecosystems, it is also important to consider how breeding phenology interacts with other anthropogenic stressors (e.g., pollutants). Using 14 populations of a widespread amphibian (wood frog; Rana sylvatica), we compared 1) growth; 2) tolerance to a common wetland contaminant (NaCl); and 3) the ability of tadpoles to acclimate to lethal NaCl exposure following sublethal exposure earlier in life. We evaluated these metrics across two breeding seasons (2018 and 2019) and across populations of tadpoles whose parents differed in breeding phenology (earlier- versus later-breeding cohorts). In both years, the earlier-breeding cohorts completed breeding activity prior to a winter storm and later-breeding cohorts completed breeding activities after a winter storm. The freezing conditions that later-breeding cohorts were exposed to in 2018 were more severe in both magnitude and duration than those in 2019. Results In 2018, offspring of the later-breeding cohort were larger but less tolerant of NaCl compared to offspring of the earlier-breeding cohort. The offspring of the earlier-breeding cohort additionally were able to acclimate to a lethal concentration of NaCl following sublethal exposure earlier in life, while the later-breeding cohort became less tolerant of NaCl following acclimation. Interestingly, in 2019, the warmer of the two breeding seasons, we did not detect the negative effects of later breeding phenology on responses to NaCl. Conclusions These results suggest that phenological shifts that expose breeding amphibians to freezing conditions can have cascading consequences on offspring mass and ability to tolerate future stressors but likely depends on the severity of the freeze event. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00413-0.
Collapse
Affiliation(s)
- Nicholas Buss
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| | - Lindsey Swierk
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.,Environmental Studies Program, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
6
|
Campos SO, Santana IV, Silva C, Santos-Amaya OF, Guedes RNC, Pereira EJG. Bt-induced hormesis in Bt-resistant insects: Theoretical possibility or factual concern? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109577. [PMID: 31446171 DOI: 10.1016/j.ecoenv.2019.109577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The biphasic dose-response of a stressor where low amounts of a toxicant may stimulate some biological processes is a recent focus of attention in insecticide ecotoxicology. Nonetheless, the importance and management consequences of this phenomenon of pesticide-induced hormesis remain largely unrecognized. Curiously, the potential induction of hormesis by insecticidal proteins such as Bacillus thuringiensis toxins (i.e., Bt toxins), a major agriculture pest management tool of widespread use, has been wholly neglected. Thus, we aimed to circumvent this shortcoming while assessing the potential occurrence of hormesis induced by the Bt toxin Cry1Fa in its main target pest species - the fall armyworm Spodoptera frugiperda. Concentration-response bioassays were carried out in a Bt-susceptible and a Bt-resistant population providing the purified Cry1Fa toxin in artificial diet and recording the insect demographic parameters. As significant hormetic effect was detected in both populations with a significant increase in the net reproductive rate and the intrinsic rate of population growth, the potential occurrence of Bt-induced hormesis was subsequently tested providing the insects with leaves from transgenic Bt maize expressing the toxic protein. The performance of the Bt-resistant insects was not different in both maize genotypes, indicating that the leaf expression of the Bt protein did not promote hormesis in the resistant insects. Thus, despite the Bt-induced hormesis detected in the purified protein bioassays, the phenomenon was not detected with current levels of Bt expression in maize minimizing the risk of this additional efficacy constraint besides that of field occurrence of Bt resistance.
Collapse
Affiliation(s)
- Silvério O Campos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Isabella V Santana
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Cleomar Silva
- Instituto Federal de Mato Grosso, São Vicente da Serra, MT, Brazil
| | - Oscar F Santos-Amaya
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil; Instituto Colombiano Agropecuário - ICA, Barranquilla, Colombia
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Interações Planta-Praga, Universidade Federal de Viçosa, MG 36570-900, Brazil
| | - Eliseu José G Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Interações Planta-Praga, Universidade Federal de Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
7
|
Sublethal Pyrethroid Insecticide Exposure Carries Positive Fitness Effects Over Generations in a Pest Insect. Sci Rep 2019; 9:11320. [PMID: 31383885 PMCID: PMC6683203 DOI: 10.1038/s41598-019-47473-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Abstract
Stress tolerance and adaptation to stress are known to facilitate species invasions. Many invasive species are also pests and insecticides are used to control them, which could shape their overall tolerance to stress. It is well-known that heavy insecticide usage leads to selection of resistant genotypes but less is known about potential effects of mild sublethal insecticide usage. We studied whether stressful, sublethal pyrethroid insecticide exposure has within-generational and/or maternal transgenerational effects on fitness-related traits in the Colorado potato beetle (Leptinotarsa decemlineata) and whether maternal insecticide exposure affects insecticide tolerance of offspring. Sublethal insecticide stress exposure had positive within-and transgenerational effects. Insecticide-stressed larvae had higher adult survival and higher adult body mass than those not exposed to stress. Furthermore, offspring whose mothers were exposed to insecticide stress had higher larval and pupal survival and were heavier as adults (only females) than those descending from control mothers. Maternal insecticide stress did not explain differences in lipid content of the offspring. To conclude, stressful insecticide exposure has positive transgenerational fitness effects in the offspring. Therefore, unsuccessful insecticide control of invasive pest species may lead to undesired side effects since survival and higher body mass are known to facilitate population growth and invasion success.
Collapse
|
8
|
Baena-Díaz F, Martínez-M I, Gil-Pérez Y, González-Tokman D. Trans-generational effects of ivermectin exposure in dung beetles. CHEMOSPHERE 2018; 202:637-643. [PMID: 29597181 DOI: 10.1016/j.chemosphere.2018.03.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Ivermectin is a powerful antiparasitic drug commonly used in cattle. Ivermectin residues are excreted in dung, threatening non-target coprophagous fauna such as dung beetles. This can have severe ecological and economic consequences for dung degradation and soil fertility. Even though the negative effects of direct ivermectin exposure on dung-degrading organisms are well known, effects could extend across generations. Here, we tested the effects of paternal or maternal exposure to ivermectin on offspring in the dung beetle Euoniticellus intermedius. This species is a classic study subject in ecotoxicology and sexual selection because males have a cephalic horn that is under intense selection via male-male competition. After confirming a negative effect of ivermectin on the number of emerged beetles, we found trans-generational effects of ivermectin exposure on the horn size of male offspring. Surprisingly however, this trans-generational effect only occurred when only the father was exposed. We detected no trans-generational effects of ivermectin exposure on offspring number, sex ratio or body size. Our results confirm that ivermectin not only has a strong effect on exposed individuals but also in their progeny. Our study opens new questions about the mechanisms responsible for parental effects and their long-term fitness consequences in contaminated habitats.
Collapse
Affiliation(s)
- Fernanda Baena-Díaz
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Imelda Martínez-M
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Yorleny Gil-Pérez
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Daniel González-Tokman
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico; CONACYT, Mexico.
| |
Collapse
|
9
|
Brevik K, Lindström L, McKay SD, Chen YH. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2018; 26:34-40. [PMID: 29764658 DOI: 10.1016/j.cois.2017.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests.
Collapse
Affiliation(s)
- Kristian Brevik
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
10
|
Renault D, Laparie M, McCauley SJ, Bonte D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:345-368. [PMID: 29029589 DOI: 10.1146/annurev-ento-020117-043315] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.
Collapse
Affiliation(s)
- David Renault
- University of Rennes 1, UMR CNRS 6553 EcoBio, 35042 Rennes Cedex, France;
- Institut Universitaire de France, 75231 Paris Cedex 05, France
| | - Mathieu Laparie
- URZF, INRA, Forest Zoology Research Unit (0633), 45075 Orléans, France;
| | - Shannon J McCauley
- Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada;
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, B-9090 Ghent, Belgium;
| |
Collapse
|
11
|
Hoffmann AA. Rapid adaptation of invertebrate pests to climatic stress? CURRENT OPINION IN INSECT SCIENCE 2017; 21:7-13. [PMID: 28822492 DOI: 10.1016/j.cois.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
There is surprisingly little information on adaptive responses of pests and disease vectors to climatic stresses even though the short generation times and large population sizes associated with pests make rapid adaptation likely. Most evidence of adaptive differentiation has been obtained from geographic comparisons and these can directly or indirectly indicate rates of adaptation where historical data on invasions are available. There is very little information on adaptive shifts in pests detected through molecular comparisons even though the genomes of many pests are now available and can help to identify markers underlying adaptation. While the limited evidence available points to frequent rapid adaptation that can affect pest and disease vector control, constraints to adaptation are also evident and a predictive framework around the likelihood and limits of rapid adaptation is required.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing. Biol Res 2015; 48:66. [PMID: 26585910 PMCID: PMC4654012 DOI: 10.1186/s40659-015-0054-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect’s ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses.
Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. Results In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect’s response to heat- and cold-stress. Conclusions These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.
Collapse
|
13
|
Alyokhin A, Mota-Sanchez D, Baker M, Snyder WE, Menasha S, Whalon M, Dively G, Moarsi WF. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. PEST MANAGEMENT SCIENCE 2015; 71:343-56. [PMID: 24817433 DOI: 10.1002/ps.3826] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/30/2014] [Accepted: 05/02/2014] [Indexed: 05/09/2023]
Abstract
Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems-based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the 'insecticide treadmill'. In evolutionary biology, a similar phenomenon is known as the Red Queen principle - continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones.
Collapse
Affiliation(s)
- Andrei Alyokhin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Guedes RNC, Cutler GC. Insecticide-induced hormesis and arthropod pest management. PEST MANAGEMENT SCIENCE 2014; 70:690-7. [PMID: 24155227 DOI: 10.1002/ps.3669] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 05/17/2023]
Abstract
Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas.
Collapse
|
15
|
Plautz SC, Guest T, Funkhouser MA, Salice CJ. Transgenerational cross-tolerance to stress: parental exposure to predators increases offspring contaminant tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:854-861. [PMID: 23483328 DOI: 10.1007/s10646-013-1056-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 06/01/2023]
Abstract
Transgenerational effects of stressors can have important implications for offspring fitness and the responses of offspring to future stressful conditions. Parental effects, a common type of transgenerational effect, are non-genetic influences on offspring phenotype that result from parental phenotypes or environments. Little is known, however, about how parental exposure to a stressor effects offspring responses to other stressors despite this type of multi-stressor scenario being common. To better understand the role that parental effects have on offspring contaminant tolerance, we raised freshwater snails, Biomphalaria glabrata, in the presence or absence of predator threat (crayfish + crushed snail) for 12 weeks. Predators are common stressors in aquatic systems and can co-occur with chemical contaminants. We then collected egg masses from parental snails and exposed their offspring to cadmium and malathion survival challenges. Snails raised in the presence of predator threat displayed indicators of stress, including increased time to first reproduction, lower production of egg masses per snail per day and fewer eggs per egg mass, and had smaller shell lengths at 6.5 weeks old compared to snails not exposed to predator threat. Parental exposure to predator threat increased the cadmium tolerance of offspring but did not affect malathion tolerance. These results may have important implications for understanding effects of multiple stressors and indicate that the parental environment can influence responses to contaminants in offspring. To our knowledge, this is the first study to demonstrate that a biotic stressor in the parental environment can significantly affect the contaminant tolerance of their offspring.
Collapse
Affiliation(s)
- Stephanie C Plautz
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | |
Collapse
|