1
|
Martin AM, Johnson JA, Berry RB, Carling M, Martínez Del Rio C. Contrasting Genomic Diversity and Inbreeding Levels Among Two Closely Related Falcon Species With Overlapping Geographic Distributions. Mol Ecol 2025; 34:e17549. [PMID: 39400432 DOI: 10.1111/mec.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Genomic resources are valuable to examine historical demographic patterns and their effects to better inform management and conservation of threatened species. We evaluated population trends and genome-wide variation in the near-threatened Orange-breasted Falcon (Falco deiroleucus) and its more common sister species, the Bat Falcon (F. rufigularis), to explore how the two species differ in genomic diversity as influenced by their contrasting long-term demographic histories. We generated and aligned whole genome resequencing data for 12 Orange-breasted Falcons and 9 Bat Falcons to an annotated Gyrfalcon (F. rusticolus) reference genome that retained approximately 22.4 million biallelic autosomal SNPs (chromosomes 1-22). Our analyses indicated much lower genomic diversity in Orange-breasted Falcons compared to Bat Falcons. All sampled Orange-breasted Falcons were significantly more inbred than the sampled Bat Falcons, with values similar to those observed in island-mainland species comparisons. The distribution of runs of homozygosity showed variation suggesting long-term low population size and the possibility of bottlenecks in Orange-breasted Falcons contrasting with consistently larger populations in Bat Falcons. Analysis of genetic load suggests that Orange-breasted Falcons are less likely to experience inbreeding depression than Bat Falcons due to reduced inbreeding load but are at elevated risk from fixation of deleterious gene variants and perhaps a reduced adaptive potential. These genomic analyses highlight differences in the historical demography of two closely related species that have influenced their current genomic diversity and should result in differing strategies for their continued conservation.
Collapse
Affiliation(s)
- Audrey M Martin
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | | | | | - Matthew Carling
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | | |
Collapse
|
2
|
Lawrence AJ, Carleton SA, Oyler‐McCance SJ, DeYoung RW, Nichols CT, Wright TF. Maintenance of Genetic Diversity Despite Population Fluctuations in the Lesser Prairie-Chicken ( Tympanuchus pallidicinctus). Ecol Evol 2025; 15:e70879. [PMID: 39850748 PMCID: PMC11757004 DOI: 10.1002/ece3.70879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/26/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025] Open
Abstract
Assessments of genetic diversity, structure, history, and effective population size (N e) are critical for the conservation of imperiled populations. The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007-2010, and 2013-2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional N e. We analyzed 194 samples across the shinnery oak prairie region of eastern New Mexico and western Texas using 13 microsatellite loci. Mean heterozygosity, allelic richness, and inbreeding coefficient were not significantly different between discrete sampling periods, suggesting that this population has maintained its genetic diversity across the sampled population fluctuations. We did not detect genetic structure using multiple Bayesian clustering approaches. Furthermore, there was no support for recent genetic bottlenecks, and we estimated that the N e ranged from 229.5 (p crit = 0.05, 95% CIs = 121.2-1023.1) to 349.1 (p crit = 0.02, 95% CIs = 176.4-2895.2) during our final sampling period (2013-2014). Although we provide evidence for gene flow within this region, continued habitat loss and fragmentation that leads to population declines and isolation could increase the risk of genetic consequences. Continued monitoring of genetic diversity and increasing available habitat that supports robust populations of lesser prairie-chickens may improve the likelihood of the species' persistence.
Collapse
Affiliation(s)
| | - Scott A. Carleton
- Division of International Conservation, International AffairsU.S. Fish and Wildlife ServiceFalls ChurchVirginiaUSA
| | | | - Randy W. DeYoung
- Caesar Kleberg Wildlife Research InstituteTexas A&M University‐KingsvilleKingsvilleTexasUSA
| | - Clay T. Nichols
- Ecological ServicesUnited States Fish and Wildlife ServiceAlbuquerqueNew MexicoUSA
| | - Timothy F. Wright
- Department of BiologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| |
Collapse
|
3
|
Bortoluzzi C, Mapel XM, Neuenschwander S, Janett F, Pausch H, Leonard AS. Genome assembly of wisent (Bison bonasus) uncovers a deletion that likely inactivates the THRSP gene. Commun Biol 2024; 7:1580. [PMID: 39604663 PMCID: PMC11603333 DOI: 10.1038/s42003-024-07295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The wisent (Bison bonasus) is Europe's largest land mammal. We produced a HiFi read-based wisent assembly with a contig N50 value of 91 Mb containing 99.7% of the highly conserved single copy mammalian genes which improves contiguity a thousand-fold over an existing assembly. Extended runs of homozygosity in the wisent genome compromised the separation of the HiFi reads into parental-specific read sets, which resulted in inferior haplotype assemblies. A bovine super-pangenome built with assemblies from wisent, bison, gaur, yak, taurine and indicine cattle identified a 1580 bp deletion removing the protein-coding sequence of THRSP encoding thyroid hormone-responsive protein from the wisent and bison genomes. Analysis of 725 sequenced samples across the Bovinae subfamily showed that the deletion is fixed in both Bison species but absent in Bos and Bubalus. The THRSP transcript is abundant in adipose, fat, liver, muscle, and mammary gland tissue of Bos and Bubalus, but absent in bison. This indicates that the deletion likely inactivates THRSP in bison. We show that super-pangenomes can reveal potentially trait-associated variation across phylogenies, but also demonstrate that haplotype assemblies from species that went through population bottlenecks warrant scrutiny, as they may have accumulated long runs of homozygosity that complicate phasing.
Collapse
Affiliation(s)
| | | | | | - Fredi Janett
- Clinic of Reproductive Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Tu TC, Lin CJ, Liu MC, Hsu ZT, Chen CF. Comparison of genomic prediction accuracy using different models for egg production traits in Taiwan country chicken. Poult Sci 2024; 103:104063. [PMID: 39098301 PMCID: PMC11639322 DOI: 10.1016/j.psj.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
In local chickens targeted for niche markets, genotyping costs are relatively high due to the small population size and diverse breeding goals. The single-step genomic best linear unbiased prediction (ssGBLUP) model, which combines pedigree and genomic information, has been introduced to increase the accuracy of genomic estimated breeding value (GEBV). Therefore, this model may be more beneficial than the genomic BLUP (GBLUP) model for genomic selection in local chickens. Additionally, the single-step genome-wide association study (ssGWAS) can be used to extend the ssGBLUP model results to animals with available phenotypic information but without genotypic data. In this study, we compared the accuracy of (G)EBVs using the pedigree-based BLUP (PBLUP), GBLUP, and ssGBLUP models. Moreover, we conducted single-SNP GWAS (SNP-GWAS), GBLUP-GWAS, and ssGWAS methods to identify genes associated with egg production traits in the NCHU-G101 chicken to understand the feasibility of using genomic selection in a small population. The average prediction accuracy of (G)EBV for egg production traits using the PBLUP, GBLUP, and ssGBLUP models is 0.536, 0.531, and 0.555, respectively. In total, 22 suggestive- and 5% Bonferroni genome-wide significant-level SNPs for total egg number (EN), average laying rate (LR), average clutch length, and total clutch number are detected using 3 GWAS methods. These SNPs are mapped onto Gallus gallus chromosomes (GGA) 4, 6, 10, 18, and 25 in NCHU-G101 chicken. Furthermore, through SNP-GWAS and ssGWAS methods, we identify 2 genes on GGA4 associated with EN and LR: ENSGALG00000023172 and PPARGC1A. In conclusion, the ssGBLUP model demonstrates superior prediction accuracy, performing on average 3.41% than the PBLUP model. The implications of our gene results may guide future selection strategies for Taiwan Country chickens. Our results highlight the applicability of the ssGBLUP model for egg production traits selection in a small population, specifically NCHU-G101 chicken in Taiwan.
Collapse
Affiliation(s)
- Tsung-Che Tu
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Chen-Jyuan Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Che Liu
- Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Zhi-Ting Hsu
- Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Chen Y, Dong L, Yi H, Kidner C, Kang M. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts. PLANT DIVERSITY 2024; 46:575-584. [PMID: 39290887 PMCID: PMC11403149 DOI: 10.1016/j.pld.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 09/19/2024]
Abstract
Understanding genome-wide diversity, inbreeding, and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience. However, these effects are rarely studied in limestone karst plants. Here, we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex (B. liuyanii, B. longgangensis, B. masoniana and B. variegata) and investigated genomic divergence and genetic load for these four species. Our analyses revealed four distinct clusters corresponding to each species within the complex. Notably, there was only limited admixture between B. liuyanii and B. longgangensis occurring in overlapping geographic regions. All species experienced historical bottlenecks during the Pleistocene, which were likely caused by glacial climate fluctuations. We detected an asymmetric historical gene flow between group pairs within this timeframe, highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation. We found that isolated populations of B. masoniana have limited gene flow, the smallest recent population size, the highest inbreeding coefficients, and the greatest accumulation of recessive deleterious mutations. These findings underscore the urgency to prioritize conservation efforts for these isolated population. This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level, shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding. Moreover, our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
Collapse
Affiliation(s)
- Yiqing Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Dong
- Guangxi Key Laboratory of Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Zeitler L, Gilbert KJ. Using Runs of Homozygosity and Machine Learning to Disentangle Sources of Inbreeding and Infer Self-Fertilization Rates. Genome Biol Evol 2024; 16:evae139. [PMID: 38935434 PMCID: PMC11245710 DOI: 10.1093/gbe/evae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Runs of homozygosity (ROHs) are indicative of elevated homozygosity and inbreeding due to mating of closely related individuals. Self-fertilization can be a major source of inbreeding which elevates genome-wide homozygosity and thus should also create long ROHs. While ROHs are frequently used to understand inbreeding in the context of conservation and selective breeding, as well as for consanguinity of populations and their demographic history, it remains unclear how ROH characteristics are altered by selfing and if this confounds expected signatures of inbreeding due to demographic change. Using simulations, we study the impact of the mode of reproduction and demographic history on ROHs. We apply random forests to identify unique characteristics of ROHs, indicative of different sources of inbreeding. We pinpoint distinct features of ROHs that can be used to better characterize the type of inbreeding the population was subjected to and to predict outcrossing rates and complex demographic histories. Using additional simulations and four empirical datasets, two from highly selfing species and two from mixed-maters, we predict the selfing rate and validate our estimations. We find that self-fertilization rates are successfully identified even with complex demography. Population genetic summary statistics improve algorithm accuracy particularly in the presence of additional inbreeding, e.g. from population bottlenecks. Our findings highlight the importance of ROHs in disentangling confounding factors related to various sources of inbreeding and demonstrate situations where such sources cannot be differentiated. Additionally, our random forest models provide a novel tool to the community for inferring selfing rates using genomic data.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Kimberly J Gilbert
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
7
|
Yang Z, Liang L, Xiang W, Wang L, Ma Q, Wang Z. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis. PLANT DIVERSITY 2024; 46:294-308. [PMID: 38798732 PMCID: PMC11119545 DOI: 10.1016/j.pld.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
Global climate change has increased concerns regarding biodiversity loss. However, many key conservation issues still required further research, including demographic history, deleterious mutation load, adaptive evolution, and putative introgression. Here we generated the first chromosome-level genome of the endangered Chinese hazelnut, Corylus chinensis, and compared the genomic signatures with its sympatric widespread C. kwechowensis-C. yunnanensis complex. We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation. Population genomics revealed that both C. chinensis and the C. kwechowensis-C. yunnanensis complex had diverged into two genetic lineages, forming a consistent pattern of southwestern-northern differentiation. Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene, whereas the widespread northern lineages have remained stable (C. chinensis) or have even recovered from population bottlenecks (C. kwechowensis-C. yunnanensis complex) during the Quaternary. Compared with C. kwechowensis-C. yunnanensis complex, C. chinensis showed significantly lower genomic diversity and higher inbreeding level. However, C. chinensis carried significantly fewer deleterious mutations than C. kwechowensis-C. yunnanensis complex, as more effective purging selection reduced the accumulation of homozygous variants. We also detected signals of positive selection and adaptive introgression in different lineages, which facilitated the accumulation of favorable variants and formation of local adaptation. Hence, both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C. chinensis. Overall, our study provides critical insights into lineage differentiation, local adaptation, and the potential for future recovery of endangered trees.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhaoshan Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
8
|
Kellner FL, Le Moullec M, Ellegaard MR, Rosvold J, Peeters B, Burnett HA, Pedersen ÅØ, Brealey JC, Dussex N, Bieker VC, Hansen BB, Martin MD. A palaeogenomic investigation of overharvest implications in an endemic wild reindeer subspecies. Mol Ecol 2024; 33:e17274. [PMID: 38279681 DOI: 10.1111/mec.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.
Collapse
Affiliation(s)
- Fabian L Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Mammals and Birds, Greenland Institute of Natural Resources (GINR), Nuuk, Greenland
| | - Martin R Ellegaard
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Rosvold
- Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Bart Peeters
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hamish A Burnett
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolas Dussex
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Brage B Hansen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
9
|
Cai L, Liu D, Yang F, Zhang R, Yun Q, Dao Z, Ma Y, Sun W. The chromosome-scale genome of Magnolia sinica (Magnoliaceae) provides insights into the conservation of plant species with extremely small populations (PSESP). Gigascience 2024; 13:giad110. [PMID: 38206588 PMCID: PMC10999834 DOI: 10.1093/gigascience/giad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first time a high-quality chromosome-scale genome sequence from M. sinica, by combining Illumina and ONT data with Hi-C scaffolding methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified repeats constituted approximately 57% of the genome, and 43,473 protein-coding genes were predicted. Phylogenetic analysis shows that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core angiosperms. In our study, a total of 21 individuals from the 5 remnant populations of M. sinica, as well as 22 specimens belonging to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic diversity (θw = 0.01126 and θπ = 0.01158) than other related species in the Magnoliaceae. However, population structure analysis suggested that the genetic differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different models consistently revealed that 2 bottleneck events occurred. The contemporary effective population size of M. sinica was estimated to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive strategies for the conservation of these 5 different populations of M. sinica. Overall, this high-quality genome will be a valuable genomic resource for conservation of M. sinica.
Collapse
Affiliation(s)
- Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengmao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261000, Shandong, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
10
|
Burnett HA, Bieker VC, Le Moullec M, Peeters B, Rosvold J, Pedersen ÅØ, Dalén L, Loe LE, Jensen H, Hansen BB, Martin MD. Contrasting genomic consequences of anthropogenic reintroduction and natural recolonization in high-arctic wild reindeer. Evol Appl 2023; 16:1531-1548. [PMID: 37752961 PMCID: PMC10519417 DOI: 10.1111/eva.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
Anthropogenic reintroduction can supplement natural recolonization in reestablishing a species' distribution and abundance. However, both reintroductions and recolonizations can give rise to founder effects that reduce genetic diversity and increase inbreeding, potentially causing the accumulation of genetic load and reduced fitness. Most current populations of the endemic high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) originate from recent reintroductions or recolonizations following regional extirpations due to past overharvesting. We investigated and compared the genomic consequences of these two paths to reestablishment using whole-genome shotgun sequencing of 100 Svalbard reindeer across their range. We found little admixture between reintroduced and natural populations. Two reintroduced populations, each founded by 12 individuals around four decades (i.e. 8 reindeer generations) ago, formed two distinct genetic clusters. Compared to the source population, these populations showed only small decreases in genome-wide heterozygosity and increases in inbreeding and lengths of runs of homozygosity. In contrast, the two naturally recolonized populations without admixture possessed much lower heterozygosity, higher inbreeding and longer runs of homozygosity, possibly caused by serial population founder effects and/or fewer or more genetically related founders than in the reintroduction events. Naturally recolonized populations can thus be more vulnerable to the accumulation of genetic load than reintroduced populations. This suggests that in some organisms even small-scale reintroduction programs based on genetically diverse source populations can be more effective than natural recolonization in establishing genetically diverse populations. These findings warrant particular attention in the conservation and management of populations and species threatened by habitat fragmentation and loss.
Collapse
Affiliation(s)
- Hamish A. Burnett
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Vanessa C. Bieker
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Bart Peeters
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jørgen Rosvold
- Department of Terrestrial BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | | | - Love Dalén
- Centre for PalaeogeneticsStockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Brage B. Hansen
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Michael D. Martin
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
11
|
Kumar M, Conroy G, Ogbourne S, Cairns K, Borburgh L, Subramanian S. Genomic signatures of bottleneck and founder effects in dingoes. Ecol Evol 2023; 13:e10525. [PMID: 37732287 PMCID: PMC10508967 DOI: 10.1002/ece3.10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Dingoes arrived in Australia during the mid-Holocene and are the top-order terrestrial predator on the continent. Although dingoes subsequently spread across the continent, the initial founding population(s) could have been small. We investigated this hypothesis by sequencing the whole genomes of three dingoes and also obtaining the genome data from nine additional dingoes and 56 canines, including wolves, village dogs and breed dogs, and examined the signatures of bottlenecks and founder effects. We found that the nucleotide diversity of dingoes was low, 36% less than highly inbred breed dogs and 3.3 times lower than wolves. The number of runs of homozygosity (RoH) segments in dingoes was 1.6-4.7 times higher than in other canines. While examining deleterious mutational load, we observed that dingoes carried elevated ratios of nonsynonymous-to-synonymous diversities, significantly higher numbers of homozygous deleterious Single Nucleotide Variants (SNVs), and increased numbers of loss of function SNVs, compared to breed dogs, village dogs, and wolves. Our findings can be explained by bottlenecks and founder effects during the establishment of dingoes in mainland Australia. These findings highlight the need for conservation-based management of dingoes and the need for wildlife managers to be cognisant of these findings when considering the use of lethal control measures across the landscape.
Collapse
Affiliation(s)
- Manoharan Kumar
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastMoreton BayQueenslandAustralia
| | - Gabriel Conroy
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Steven Ogbourne
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Kylie Cairns
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW AustraliaSydneyNew South WalesAustralia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW AustraliaSydneyNew South WalesAustralia
| | - Liesbeth Borburgh
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Sankar Subramanian
- School of Science, Technology, and EngineeringThe University of the Sunshine CoastMoreton BayQueenslandAustralia
- Centre for BioinnovationThe University of the Sunshine CoastSippy DownsQueenslandAustralia
| |
Collapse
|
12
|
Afonso RO, Pina-Martins F, Friesen V, Sun Z, Campioni L, Madeiros J, Silva MC. No evidence of inbreeding depression despite a historical severe bottleneck in the endangered Bermuda petrel (Pterodroma cahow). J Hered 2023; 114:459-469. [PMID: 37162284 DOI: 10.1093/jhered/esad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
The Bermuda petrel Pterodroma cahow is an island endemic seabird that belongs to the Procellariiformes, one of the most endangered orders of birds. Historical records suggest a significant population size decline following human settlement in Bermuda, bringing the species to near extinction. Since the 1950s, the population has been recovering aided by the implementation of an ongoing conservation plan. However, it still faces several threats, and negative genetic effects resulting from that drastic decline are to be expected, including inbreeding and genetic drift. We studied genetic diversity and levels of inbreeding, and their effects on individual fitness and mating choice. We also tested for a genetic signature of the recent demographic bottleneck. For this, we analyzed variation in thousands of nuclear single-nucleotide polymorphisms derived from double digest restriction site-associated DNA sequencing and 1 mitochondrial gene (cytochrome oxidase I). The results revealed that the Bermuda petrel suffered a recent genetic bottleneck and shows low mitochondrial diversity compared with other petrel species. Conversely, nuclear diversity was similar to that of other endangered petrels. Inbreeding levels were not high overall, although some individuals were highly inbred. However, we found no evidence that individual inbreeding or relatedness between mates affected hatching success, or that mate choice is influenced by kinship in this very small population.
Collapse
Affiliation(s)
- Rita O Afonso
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Pina-Martins
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vicki Friesen
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Zhengxin Sun
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Letizia Campioni
- MARE-Marine and Environmental Sciences Centre, Ispa-Instituto Universitário, Lisboa, Portugal
| | - Jeremy Madeiros
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton, Bermuda
| | - Mónica C Silva
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Johnson JA, Athrey G, Anderson CM, Bell DA, Dixon A, Kumazawa Y, Maechtle T, Meeks GW, Mindell D, Nakajima K, Novak B, Talbot S, White C, Zhan X. Whole-genome survey reveals extensive variation in genetic diversity and inbreeding levels among peregrine falcon subspecies. Ecol Evol 2023; 13:e10347. [PMID: 37484928 PMCID: PMC10361364 DOI: 10.1002/ece3.10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
In efforts to prevent extinction, resource managers are often tasked with increasing genetic diversity in a population of concern to prevent inbreeding depression or improve adaptive potential in a changing environment. The assumption that all small populations require measures to increase their genetic diversity may be unwarranted, and limited resources for conservation may be better utilized elsewhere. We test this assumption in a case study focused on the peregrine falcon (Falco peregrinus), a cosmopolitan circumpolar species with 19 named subspecies. We used whole-genome resequencing to generate over two million single nucleotide polymorphisms (SNPs) from multiple individuals of all peregrine falcon subspecies. Our analyses revealed extensive variation among subspecies, with many island-restricted and nonmigratory populations possessing lower overall genomic diversity, elevated inbreeding coefficients (F ROH)-among the highest reported, and extensive runs of homozygosity (ROH) compared to mainland and migratory populations. Similarly, the majority of subspecies that are either nonmigratory or restricted to islands show a much longer history of low effective population size (N e). While mutational load analyses indicated an increased proportion of homozygous-derived deleterious variants (i.e., drift load) among nonmigrant and island populations compared to those that are migrant or reside on the mainland, no significant differences in the proportion of heterozygous deleterious variants (i.e., inbreeding load) was observed. Our results provide evidence that high levels of inbreeding may not be an existential threat for some populations or taxa. Additional factors such as the timing and severity of population declines are important to consider in management decisions about extinction potential.
Collapse
Affiliation(s)
- Jeff A. Johnson
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Wolf Creek Operating FoundationWolfWyomingUSA
| | - Giridhar Athrey
- Department of Poultry Science & Faculty of Ecology and Evolutionary BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Douglas A. Bell
- East Bay Regional Park DistrictOaklandCaliforniaUSA
- California Academy of SciencesSan FranciscoCaliforniaUSA
| | - Andrew Dixon
- The Mohamed Bin Zayed Raptor Conservation FundAbu DhabiUnited Arab Emirates
- International Wildlife ConsultantsCarmarthenUK
| | - Yoshinori Kumazawa
- Research Center for Biological DiversityNagoya City UniversityNagoyaJapan
| | | | - Garrett W. Meeks
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - David Mindell
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Keiya Nakajima
- Research Center for Biological DiversityNagoya City UniversityNagoyaJapan
- The Japan Falconiformes CenterOwariasahiJapan
| | - Ben Novak
- Revive & RestoreSausalitoCaliforniaUSA
| | - Sandra Talbot
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
| | | | | |
Collapse
|
14
|
Wu Z, Bosse M, Rochus CM, Groenen MAM, Crooijmans RPMA. Genomic insight into the influence of selection, crossbreeding, and geography on population structure in poultry. Genet Sel Evol 2023; 55:5. [PMID: 36670351 PMCID: PMC9854048 DOI: 10.1186/s12711-022-00775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In poultry, the population structure of local breeds is usually complex mainly due to unrecorded breeding. Local chicken breeds offer an interesting proxy to understand the complexity of population structure in the context of human-mediated development of diverse morphologies and varieties. We studied 37 traditional Dutch chicken breeds to investigate population structure and the corresponding genomic impact using whole-genome sequence data. RESULTS Looking at the genetic differences between breeds, the Dutch chicken breeds demonstrated a complex and admixed subdivided structure. The dissection of this complexity highlighted the influence of selection adhering to management purposes, as well as the role of geographic distance within subdivided breed clusters. Identification of signatures of genetic differentiation revealed genomic regions that are associated with diversifying phenotypic selection between breeds, including dwarf size (bantam) and feather color. In addition, with a case study of a recently developed bantam breed developed by crossbreeding, we provide a genomic perspective on the effect of crossbreeding. CONCLUSIONS This study demonstrates the complex population structure of local traditional Dutch chicken, and provides insight into the genomic basis and the factors involved in the formation of this complexity.
Collapse
Affiliation(s)
- Zhou Wu
- grid.4818.50000 0001 0791 5666Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands ,grid.4305.20000 0004 1936 7988Present Address: The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Mirte Bosse
- grid.4818.50000 0001 0791 5666Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Christina M. Rochus
- grid.4818.50000 0001 0791 5666Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands ,grid.34429.380000 0004 1936 8198Present Address: Centre for Genetic Improvement of Livestock, Animal Biosciences, University of Guelph, Guelph, ON Canada
| | - Martien A. M. Groenen
- grid.4818.50000 0001 0791 5666Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard P. M. A. Crooijmans
- grid.4818.50000 0001 0791 5666Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Zhu X, Liang H, Jiang H, Kang M, Wei X, Deng L, Shi Y. Phylogeographic structure of Heteroplexis (Asteraceae), an endangered endemic genus in the limestone karst regions of southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:999964. [PMID: 36388513 PMCID: PMC9647136 DOI: 10.3389/fpls.2022.999964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Hui Liang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Haolong Jiang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Ming Kang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Lili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yancai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
16
|
Rolek BW, Dunn L, Pauli B, Macias-Duarte A, Mutch B, Juergens P, Anderson T, Parish CN, Johnson JA, Millsap B, McClure CJ. Long-term demography of a reintroduced population of endangered falcons. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Bosse M, van Loon S. Challenges in quantifying genome erosion for conservation. Front Genet 2022; 13:960958. [PMID: 36226192 PMCID: PMC9549127 DOI: 10.3389/fgene.2022.960958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.
Collapse
Affiliation(s)
- Mirte Bosse
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Jackson HA, Percival‐Alwyn L, Ryan C, Albeshr MF, Venturi L, Morales HE, Mathers TC, Cocker J, Speak SA, Accinelli GG, Barker T, Heavens D, Willman F, Dawson D, Ward L, Tatayah V, Zuël N, Young R, Concannon L, Whitford H, Clavijo B, Bunbury N, Tyler KM, Ruhomaun K, Grace MK, Bruford MW, Jones CG, Tollington S, Bell DJ, Groombridge JJ, Clark M, Van Oosterhout C. Genomic erosion in a demographically recovered bird species during conservation rescue. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13918. [PMID: 35554972 PMCID: PMC9546124 DOI: 10.1111/cobi.13918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/15/2023]
Abstract
The pink pigeon (Nesoenas mayeri) is an endemic species of Mauritius that has made a remarkable recovery after a severe population bottleneck in the 1970s to early 1990s. Prior to this bottleneck, an ex situ population was established from which captive-bred individuals were released into free-living subpopulations to increase population size and genetic variation. This conservation rescue led to rapid population recovery to 400-480 individuals, and the species was twice downlisted on the International Union for the Conservation of Nature (IUCN) Red List. We analyzed the impacts of the bottleneck and genetic rescue on neutral genetic variation during and after population recovery (1993-2008) with restriction site-associated sequencing, microsatellite analyses, and quantitative genetic analysis of studbook data of 1112 birds from zoos in Europe and the United States. We used computer simulations to study the predicted changes in genetic variation and population viability from the past into the future. Genetic variation declined rapidly, despite the population rebound, and the effective population size was approximately an order of magnitude smaller than census size. The species carried a high genetic load of circa 15 lethal equivalents for longevity. Our computer simulations predicted continued inbreeding will likely result in increased expression of deleterious mutations (i.e., a high realized load) and severe inbreeding depression. Without continued conservation actions, it is likely that the pink pigeon will go extinct in the wild within 100 years. Conservation rescue of the pink pigeon has been instrumental in the recovery of the free-living population. However, further genetic rescue with captive-bred birds from zoos is required to recover lost variation, reduce expression of harmful deleterious variation, and prevent extinction. The use of genomics and modeling data can inform IUCN assessments of the viability and extinction risk of species, and it helps in assessments of the conservation dependency of populations.
Collapse
Affiliation(s)
- Hazel A. Jackson
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | | | - Camilla Ryan
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- The Earlham InstituteNorwichUK
| | - Mohammed F. Albeshr
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Department of Zoology, Faculty of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Luca Venturi
- Department of Life SciencesThe Natural History MuseumLondonUK
| | | | | | - Jonathan Cocker
- The Earlham InstituteNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Samuel A. Speak
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | | | | | | | - Faye Willman
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentCanterburyUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Deborah Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Lauren Ward
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentCanterburyUK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | | | - Nicholas Zuël
- Mauritian Wildlife FoundationVacoas‐PhoenixMauritius
| | - Richard Young
- Durrell Wildlife Conservation TrustJerseyChannel Islands
| | | | | | | | - Nancy Bunbury
- Seychelles Islands FoundationVictoriaSeychelles
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Kevin M. Tyler
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - Kevin Ruhomaun
- National Parks and Conservation Service, Ministry of EnvironmentGovernment of MauritiusRéduitMauritius
| | - Molly K. Grace
- Molly K. Grace, Department of ZoologyUniversity of OxfordOxfordUK
| | | | - Carl G. Jones
- Mauritian Wildlife FoundationVacoas‐PhoenixMauritius
- Durrell Wildlife Conservation TrustJerseyChannel Islands
| | - Simon Tollington
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentCanterburyUK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- North of England Zoological SocietyChester ZooChesterUK
| | - Diana J. Bell
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Jim J. Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Matt Clark
- The Earlham InstituteNorwichUK
- Department of Life SciencesThe Natural History MuseumLondonUK
| | | |
Collapse
|
19
|
Yıldız B, Megens H, Hvilsom C, Bosse M. Genomic consequences of a century of inbreeding and isolation in the Danish wild boar population. Evol Appl 2022; 15:954-966. [PMID: 35782012 PMCID: PMC9234630 DOI: 10.1111/eva.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Demographic events such as series of bottlenecks impact the genetic variation and adaptive potential of populations. European megafauna, such as wild boars (Sus scrofa), have experienced severe climatic and size fluctuations that have shaped their genetic variation. Habitat fragmentation and human-mediated translocations have further contributed to the complex demographic history of European wild boar. Danish wild boars represent an extreme case of a small and isolated population founded by four wild boars from Germany. Here, we explore the genetic composition of the Danish wild boar population in Klelund. We genotyped all 21 Danish wild boars that were recently transferred from the source population in Lille Vildmose into the Klelund Plantation to establish a novel wild boar population. We compared the Danish wild boars with high-density single-nucleotide polymorphism genotypes from a comprehensive reference set of 1263 wild and domesticated pigs, including 11 individuals from Ulm, one of two presumed founder locations in Germany. Our findings support the European wild background of the Danish population, and no traces of gene flow with wild or domesticated pigs were found. The narrow genetic origin of the Danish wild boars is illustrated by extremely long and frequent runs of homozygous stretches in their genomes, indicative of recent inbreeding. This study provides the first insights into one of the most inbred wild boar populations globally established a century ago from a narrow base of only four founders.
Collapse
Affiliation(s)
- Beril Yıldız
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | | | - Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
- Amsterdam Institute for Life and Environment (A‐LIFE)Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Wolf M, de Jong M, Daníel Halldórsson S, Árnason Ú, Janke A. Genomic impact of whaling in North Atlantic fin whales. Mol Biol Evol 2022; 39:6580755. [PMID: 35512360 PMCID: PMC9113106 DOI: 10.1093/molbev/msac094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany
| | - Menno de Jong
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany
| | | | - Úlfur Árnason
- Department of Clinical Sciences Lund, Lund University, Sweden, Department of Neurosurgery, Skane University Hospital in Lund, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany.,LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Assessment of linkage disequilibrium patterns between structural variants and single nucleotide polymorphisms in three commercial chicken populations. BMC Genomics 2022; 23:193. [PMID: 35264116 PMCID: PMC8908679 DOI: 10.1186/s12864-022-08418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that assessed LD between SVs and SNPs in chickens. RESULTS The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50% of the difference between SNP - SNP and DUP - SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays. CONCLUSIONS The results implied that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.
Collapse
|
23
|
Wang X, Li G, Ruan D, Zhuang Z, Ding R, Quan J, Wang S, Jiang Y, Huang J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Runs of Homozygosity Uncover Potential Functional-Altering Mutation Associated With Body Weight and Length in Two Duroc Pig Lines. Front Vet Sci 2022; 9:832633. [PMID: 35350434 PMCID: PMC8957889 DOI: 10.3389/fvets.2022.832633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
24
|
Genetic load: genomic estimates and applications in non-model animals. Nat Rev Genet 2022; 23:492-503. [PMID: 35136196 DOI: 10.1038/s41576-022-00448-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.
Collapse
|
25
|
Ma H, Liu Y, Liu D, Sun W, Liu X, Wan Y, Zhang X, Zhang R, Yun Q, Wang J, Li Z, Ma Y. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1533-1545. [PMID: 34189793 DOI: 10.1111/tpj.15399] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e-3; π = 1.94e-3) when compared not only to R. delavayi (θ = 11.61e-3, π = 12.97e-3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.
Collapse
Affiliation(s)
- Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Rengang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Quanzheng Yun
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Jihua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, 650205, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
26
|
Wang MS, Zhang JJ, Guo X, Li M, Meyer R, Ashari H, Zheng ZQ, Wang S, Peng MS, Jiang Y, Thakur M, Suwannapoom C, Esmailizadeh A, Hirimuthugoda NY, Zein MSA, Kusza S, Kharrati-Koopaee H, Zeng L, Wang YM, Yin TT, Yang MM, Li ML, Lu XM, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasig TM, Feng SH, Zhang H, Bhuiyan AKFH, Khan MS, Silva GLLP, Thuy LT, Mwai OA, Ibrahim MNM, Zhang G, Qu KX, Hanotte O, Shapiro B, Bosse M, Wu DD, Han JL, Zhang YP. Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biol 2021; 19:118. [PMID: 34130700 PMCID: PMC8207802 DOI: 10.1186/s12915-021-01052-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/19/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rachel Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hidayat Ashari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Zhu-Qing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Chatmongkon Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand.,Unit of Excellence on Biodiversity and Natural Resources Management, University of Phayao, Phayao, 56000, Thailand
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran
| | - Nalini Yasoda Hirimuthugoda
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Moch Syamsul Arifin Zein
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia
| | - Szilvia Kusza
- Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, H-4032, Hungary
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, P.O. Box 1585, Shiraz, Iran
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yun-Mei Wang
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | | | | | - Shao-Hong Feng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Hao Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture of China, Beijing, 100193, China
| | | | | | | | - Le Thi Thuy
- National Institute of Animal Husbandry, Hanoi, Vietnam
| | - Okeyo A Mwai
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | | | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-1870, Copenhagen, Denmark
| | - Kai-Xing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Livestock Genetics Program, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mirte Bosse
- Wageningen University & Research - Animal Breeding and Genomics, 6708 PB, Wageningen, The Netherlands.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. .,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
27
|
Wu Z, Bortoluzzi C, Derks MFL, Liu L, Bosse M, Hiemstra SJ, Groenen MAM, Crooijmans RPMA. Heterogeneity of a dwarf phenotype in Dutch traditional chicken breeds revealed by genomic analyses. Evol Appl 2021; 14:1095-1108. [PMID: 33897823 PMCID: PMC8061282 DOI: 10.1111/eva.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
The growth of animals is a complex trait, in chicken resulting in a diverse variety of forms, caused by a heterogeneous genetic basis. Bantam chicken, known as an exquisite form of dwarfism, has been used for crossbreeding to create corresponding dwarf counterparts for native fowls in the Dutch populations. Here, we demonstrate the heterogeneity of the bantam trait in Dutch chickens and reveal the underlying genetic causes, using whole-genome sequence data from matching pairs of bantam and normal-sized breeds. During the bantam-oriented crossbreeding, various bantam origins were used to introduce the bantam phenotype, and three major bantam sources were identified and clustered. The genome-wide association studies revealed multiple genetic variants and genes associated with bantam phenotype, including HMGA2 and PRDM16, genes involved in body growth and stature. The comparison of associated variants among studies illustrated differences related to divergent bantam origins, suggesting a clear heterogeneity among bantam breeds. We show that in neo-bantam breeds, the bantam-related regions underwent a strong haplotype introgression from the bantam source, outcompeting haplotypes from the normal-sized counterpart. The bantam heterogeneity is further confirmed by the presence of multiple haplotypes comprising associated alleles, which suggests the selection of the bantam phenotype is likely subject to a convergent direction across populations. Our study demonstrates that the diverse history of human-mediated crossbreeding has contributed to the complexity and heterogeneity of the bantam phenotype.
Collapse
Affiliation(s)
- Zhou Wu
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Chiara Bortoluzzi
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Martijn F. L. Derks
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Langqing Liu
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Sipke Joost Hiemstra
- Centre for Genetic Resources, the Netherlands (CGN) of Wageningen University & ResearchWageningenThe Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | | |
Collapse
|
28
|
Liu L, Bosse M, Megens H, de Visser M, A. M. Groenen M, Madsen O. Genetic consequences of long-term small effective population size in the critically endangered pygmy hog. Evol Appl 2021; 14:710-720. [PMID: 33767746 PMCID: PMC7980308 DOI: 10.1111/eva.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing human disturbance and climate change have a major impact on habitat integrity and size, with far-reaching consequences for wild fauna and flora. Specifically, population decline and habitat fragmentation result in small, isolated populations. To what extend different endangered species can cope with small population size is still largely unknown. Studies on the genomic landscape of these species can shed light on past demographic dynamics and current genetic load, thereby also providing guidance for conservation programs. The pygmy hog (Porcula salvania) is the smallest and rarest wild pig in the world, with current estimation of only a few hundred living in the wild. Here, we analyzed whole-genome sequencing data of six pygmy hogs, three from the wild and three from a captive population, along with 30 pigs representing six other Suidae. First, we show that the pygmy hog had a very small population size with low genetic diversity over the course of the past ~1 million years. One indication of historical small effective population size is the absence of mitochondrial variation in the six sequenced individuals. Second, we evaluated the impact of historical demography. Runs of homozygosity (ROH) analysis suggests that the pygmy hog population has gone through past but not recent inbreeding. Also, the long-term, extremely small population size may have led to the accumulation of harmful mutations suggesting that the accumulation of deleterious mutations is exceeding purifying selection in this species. Thus, care has to be taken in the conservation program to avoid or minimize the potential for further inbreeding depression, and guard against environmental changes in the future.
Collapse
Affiliation(s)
- Langqing Liu
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Manon de Visser
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Ole Madsen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
29
|
Groß C, Bortoluzzi C, de Ridder D, Megens HJ, Groenen MAM, Reinders M, Bosse M. Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. PLoS Genet 2020; 16:e1009027. [PMID: 32966296 PMCID: PMC7535126 DOI: 10.1371/journal.pgen.1009027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/05/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022] Open
Abstract
The availability of genomes for many species has advanced our understanding of the non-protein-coding fraction of the genome. Comparative genomics has proven itself to be an invaluable approach for the systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). However, for many non-mammalian model species, including chicken, our capability to interpret the functional importance of variants overlapping CNEs has been limited by current genomic annotations, which rely on a single information type (e.g. conservation). We here studied CNEs in chicken using a combination of population genomics and comparative genomics. To investigate the functional importance of variants found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD) model, a variant effect prediction tool first introduced for humans and later on for mouse and pig. We show that 73 Mb of the chicken genome has been conserved across more than 280 million years of vertebrate evolution. The vast majority of the conserved elements are in non-protein-coding regions, which display SNP densities and allele frequency distributions characteristic of genomic regions constrained by purifying selection. By annotating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs to be of higher functional importance, as supported by SNPs found in these subregions are associated with known disease genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants of functional significance that should be object of further investigation along with protein-coding mutations. We therefore anticipate chCADD to be of great use to the scientific community and breeding companies in future functional studies in chicken.
Collapse
Affiliation(s)
- Christian Groß
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
- Delft Bioinformatics Lab, University of Technology Delft, 2600 GA, Delft, The Netherlands
| | - Chiara Bortoluzzi
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, University of Technology Delft, 2600 GA, Delft, The Netherlands
| | - Mirte Bosse
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
30
|
Bortoluzzi C, Megens HJ, Bosse M, Derks MFL, Dibbits B, Laport K, Weigend S, Groenen MAM, Crooijmans RPMA. Parallel Genetic Origin of Foot Feathering in Birds. Mol Biol Evol 2020; 37:2465-2476. [PMID: 32344429 PMCID: PMC7475038 DOI: 10.1093/molbev/msaa092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic basis of similar phenotypes shared between lineages is a long-lasting research interest. Even though animal evolution offers many examples of parallelism, for many phenotypes little is known about the underlying genes and mutations. We here use a combination of whole-genome sequencing, expression analyses, and comparative genomics to study the parallel genetic origin of ptilopody (Pti) in chicken. Ptilopody (or foot feathering) is a polygenic trait that can be observed in domesticated and wild avian species and is characterized by the partial or complete development of feathers on the ankle and feet. In domesticated birds, ptilopody is easily selected to fixation, though extensive variation in the type and level of feather development is often observed. By means of a genome-wide association analysis, we identified two genomic regions associated with ptilopody. At one of the loci, we identified a 17-kb deletion affecting PITX1 expression, a gene known to encode a transcription regulator of hindlimb identity and development. Similarly to pigeon, at the second loci, we observed ectopic expression of TBX5, a gene involved in forelimb identity and a key determinant of foot feather development. We also observed that the trait evolved only once as foot-feathered birds share the same haplotype upstream TBX5. Our findings indicate that in chicken and pigeon ptilopody is determined by the same set of genes that affect similar molecular pathways. Our study confirms that ptilopody has evolved through parallel evolution in chicken and pigeon.
Collapse
Affiliation(s)
- Chiara Bortoluzzi
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Kimberly Laport
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Steffen Weigend
- Friedrich-Loeffler-Institut (FLI), Institute of Farm Animal Genetics, Neustadt, Germany
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
31
|
Emam AM, Afonso S, González-Redondo P, Mehaisen G, Azoz A, Ahmed N, Fernand N. Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis. WORLD RABBIT SCIENCE 2020. [DOI: 10.4995/wrs.2020.12219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
<p>Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and -1.900 (<em>P</em><0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7% of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild <em>Oryctolagus cuniculus</em> published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed.</p>
Collapse
|