1
|
Qi H, Cong R, Wang Y, Li L, Zhang G. Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas. Gigascience 2022; 12:giad077. [PMID: 37787064 PMCID: PMC10546077 DOI: 10.1093/gigascience/giad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The Portuguese oyster Crassostrea angulata and the Pacific oyster C. gigas are two major Crassostrea species that are naturally distributed along the Northwest Pacific coast and possess great ecological and economic value. Here, we report the construction and comparative analysis of the chromosome-level haplotype-resolved genomes of the two oyster congeners. FINDINGS Based on a trio-binning strategy, the PacBio high-fidelity and Illumina Hi-C reads of the offspring of the hybrid cross C. angulata (♂) × C. gigas (♀) were partitioned and independently assembled to construct two chromosome-level fully phased genomes. The assembly size (contig N50 size, BUSCO completeness) of the two genomes were 582.4 M (12.8 M, 99.1%) and 606.4 M (5.46 M, 98.9%) for C. angulata and C. gigas, respectively, ranking at the top of mollusk genomes with high contiguity and integrity. The general features of the two genomes were highly similar, and 15,475 highly conserved ortholog gene pairs shared identical gene structures and similar genomic locations. Highly similar sequences can be primarily identified in the coding regions, whereas most noncoding regions and introns of genes in the same ortholog group contain substantial small genomic and/or structural variations. Based on population resequencing analysis, a total of 2,756 species-specific single-nucleotide polymorphisms and 1,088 genes possibly under selection were identified. CONCLUSIONS This is the first report of trio-binned fully phased chromosome-level genomes in marine invertebrates. The study provides fundamental resources for the research on mollusk genetics, comparative genomics, and molecular evolution.
Collapse
Affiliation(s)
- Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanjun Wang
- Marine Science Data Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266105, China
| |
Collapse
|
2
|
Gundappa MK, Peñaloza C, Regan T, Boutet I, Tanguy A, Houston RD, Bean TP, Macqueen DJ. Chromosome-level reference genome for European flat oyster ( Ostrea edulis L.). Evol Appl 2022; 15:1713-1729. [PMID: 36426132 PMCID: PMC9679249 DOI: 10.1111/eva.13460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe, which was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference genome for this species is lacking to date. Here, we report a chromosome-level assembly and annotation for the European Flat oyster genome, generated using Oxford Nanopore, Illumina, Dovetail OmniC™ proximity ligation and RNA sequencing. A contig assembly (N50: 2.38 Mb) was scaffolded into the expected karyotype of 10 pseudochromosomes. The final assembly is 935.13 Mb, with a scaffold-N50 of 95.56 Mb, with a predicted repeat landscape dominated by unclassified elements specific to O. edulis. The assembly was verified for accuracy and completeness using multiple approaches, including a novel linkage map built with ddRAD-Seq technology, comprising 4016 SNPs from four full-sib families (eight parents and 163 F1 offspring). Annotation of the genome integrating multitissue transcriptome data, comparative protein evidence and ab-initio gene prediction identified 35,699 protein-coding genes. Chromosome-level synteny was demonstrated against multiple high-quality bivalve genome assemblies, including an O. edulis genome generated independently for a French O. edulis individual. Comparative genomics was used to characterize gene family expansions during Ostrea evolution that potentially facilitated adaptation. This new reference genome for European flat oyster will enable high-resolution genomics in support of conservation and aquaculture initiatives, and improves our understanding of bivalve genome evolution.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Isabelle Boutet
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Arnaud Tanguy
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| |
Collapse
|