1
|
Tippen SP, Metzger CE, Sacks SA, Allen MR, Mitchell CF, McNulty MA. Clinically relevant doses of tiludronate do not affect bone remodelling in pasture-exercised horses. Equine Vet J 2025; 57:513-521. [PMID: 38924597 PMCID: PMC11807941 DOI: 10.1111/evj.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Bisphosphonates are widely used in equine athletes to reduce lameness associated with skeletal disorders. Widespread off-label use has led to concern regarding potential negative effects on bone healing, but little evidence exists to support or refute this. OBJECTIVES To investigate the influence of clinically relevant doses of tiludronate on bone remodelling and bone healing. STUDY DESIGN Randomised, controlled in vivo experiments. METHODS Each horse had a single tuber coxae biopsied (Day 0), then were divided into a treatment (IV tiludronate) or control (IV saline) group. Treatments were administered 30 and 90 days following initial biopsy. Biopsy of the tuber coxae was repeated on Day 60 to evaluate bone healing following a single treatment. Oxytetracycline was administered on Days 137 and 147 to label bone formation. The contralateral tuber coxae was biopsied on Day 150 to evaluate effects of repeated treatment. Bone biopsies were evaluated with micro-computed tomography and/or dynamic histomorphometry using standard techniques. RESULTS Nineteen horses completed the study, with no complications following the biopsies and treatments. No significant differences in the trabecular bone parameters or bone formation rate were observed between treatment groups. MAIN LIMITATIONS The use of a first-generation bisphosphonate may mean some effects of these drugs are underrepresented using this model. The results pertain to the tuber coxae and may not reflect injury or the healing response that occurs in long bones in training or racing. CONCLUSIONS In this model, tiludronate did not affect normal bone remodelling in the horse, despite repeat dosages.
Collapse
Affiliation(s)
- Samantha P. Tippen
- Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of EducationInnovation, & Technology, Baylor College of MedicineHoustonTexasUSA
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Spencer A. Sacks
- Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colin F. Mitchell
- Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Margaret A. McNulty
- Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Grass DM, Malek G, Taïeb HM, Ittah E, Richard H, Reznikov N, Laverty S. Characterization and quantification of in-vitro equine bone resorption in 3D using μCT and deep learning-aided feature segmentation. Bone 2024; 185:117131. [PMID: 38777311 DOI: 10.1016/j.bone.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
High cyclic strains induce formation of microcracks in bone, triggering targeted bone remodeling, which entails osteoclastic resorption. Racehorse bone is an ideal model for studying the effects of high-intensity loading, as it is subject to focal formation of microcracks and subsequent bone resorption. The volume of resorption in vitro is considered a direct indicator of osteoclast activity but indirect 2D measurements are used more often. Our objective was to develop an accurate, high-throughput method to quantify equine osteoclast resorption volume in μCT 3D images. Here, equine osteoclasts were cultured on equine bone slices and imaged with μCT pre- and postculture. Individual resorption events were then isolated and analyzed in 3D. Modal volume, maximum depth, and aspect ratio of resorption events were calculated. A convolutional neural network (CNN U-Net-like) was subsequently trained to identify resorption events on post-culture μCT images alone, without the need for pre-culture imaging, using archival bone slices with known resorption areas and paired CTX-I biomarker levels in culture media. 3D resorption volume measurements strongly correlated with both the CTX-I levels (p < 0.001) and area measurements (p < 0.001). Our 3D analysis shows that the shapes of resorption events form a continuous spectrum, rather than previously reported pit and trench categories. With more extensive resorption, shapes of increasing complexity appear, although simpler resorption cavity morphologies (small, rounded) remain most common, in acord with the left-hand limit paradigm. Finally, we show that 2D measurements of in vitro osteoclastic resorption are a robust and reliable proxy.
Collapse
Affiliation(s)
- Debora M Grass
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Hubert M Taïeb
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Eran Ittah
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Natalie Reznikov
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
3
|
Kent AV. Clinical insights: Outcomes of juvenile orthopaedic lesions. Equine Vet J 2024; 56:380-382. [PMID: 38578099 DOI: 10.1111/evj.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 04/06/2024]
|
4
|
Vergara-Hernandez FB, Nielsen BD, Popovich JM, Panek CL, Logan AA, Robison CI, Ehrhardt RA, Johnson TN, Chargo NJ, Welsh TH, Bradbery AN, Leatherwood JL, Colbath AC. Clodronate disodium does not produce measurable effects on bone metabolism in an exercising, juvenile, large animal model. PLoS One 2024; 19:e0300360. [PMID: 38626145 PMCID: PMC11020481 DOI: 10.1371/journal.pone.0300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 04/18/2024] Open
Abstract
Bisphosphonates are commonly used to treat and prevent bone loss, but their effects in active, juvenile populations are unknown. This study examined the effects of intramuscular clodronate disodium (CLO) on bone turnover, serum bone biomarkers (SBB), bone mineral density (BMD), bone microstructure, biomechanical testing (BT), and cartilage glycosaminoglycan content (GAG) over 165 days. Forty juvenile sheep (253 ± 6 days of age) were divided into four groups: Control (saline), T0 (0.6 mg/kg CLO on day 0), T84 (0.6 mg/kg CLO on day 84), and T0+84 (0.6 mg/kg CLO on days 0 and 84). Sheep were exercised 4 days/week and underwent physical and lameness examinations every 14 days. Blood samples were collected for SBB every 28 days. Microstructure and BMD were calculated from tuber coxae (TC) biopsies (days 84 and 165) and bone healing was assessed by examining the prior biopsy site. BT and GAG were evaluated postmortem. Data, except lameness data, were analyzed using a mixed-effects model; lameness data were analyzed as ordinal data using a cumulative logistic model. CLO did not have any measurable effects on the skeleton of sheep. SBB showed changes over time (p ≤ 0.03), with increases in bone formation and decreases in some bone resorption markers. TC biopsies showed increasing bone volume fraction, trabecular spacing and thickness, and reduced trabecular number on day 165 versus day 84 (p ≤ 0.04). These changes may be attributed to exercise or growth. The absence of a treatment effect may be explained by the lower CLO dose used in large animals compared to humans. Further research is needed to examine whether low doses of bisphosphonates may be used in active juvenile populations for analgesia without evidence of bone changes.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
- School of Veterinary Medicine, College of Natural Resources and Veterinary Medicine, Universidad Santo Tomas, Viña del Mar, Chile
| | - Brian D. Nielsen
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
| | - John M. Popovich
- Center for Neuromusculoskeletal Clinical Research, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Char L. Panek
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alyssa A. Logan
- School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Cara I. Robison
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard A. Ehrhardt
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Tyler N. Johnson
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas J. Chargo
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas H. Welsh
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Amanda N. Bradbery
- Department of Animal and Range Sciences, College of Agriculture, Montana State University, Bozeman, Montana, United States of America
| | - Jessica L. Leatherwood
- Department of Animal Science, College of Agriculture and Natural Resources, Tarleton State University, Stephenville, Texas, United States of America
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Yocom A, Contino E, Kawcak C. Review of the Mechanism of Action and Use of Bisphosphonates in Horses. J Equine Vet Sci 2023:104503. [PMID: 37120118 DOI: 10.1016/j.jevs.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Bisphosphonates are a group of drugs that can reduce bone resorption by incorporating into the crystal structure of exposed hydroxyapatite where they are taken up by osteoclasts. Bisphosphonates have several other mechanisms of action including reducing pain and inflammation and altering macrophage function. There are two types of bisphosphonates - nitrogenous and non-nitrogenous, the latter of which is used in horses. This article provides a literature-based review of the proposed mechanisms of action and therapeutic uses of bisphosphonates including a brief review of bone response to disease. A review of the literature available in horses including safety data and current rules and regulations is also provided.
Collapse
Affiliation(s)
- Alicia Yocom
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523
| | - Erin Contino
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523
| | - Christopher Kawcak
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523.
| |
Collapse
|
6
|
Vergara-Hernandez FB, Nielsen BD, Colbath AC. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals (Basel) 2022; 12:ani12131722. [PMID: 35804621 PMCID: PMC9265010 DOI: 10.3390/ani12131722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Bisphosphonates are a group of drugs that intervene in the bone resorption process, producing cellular death of osteoclasts. These drugs are used for skeletal conditions, such as osteoporosis in humans, and are available for veterinary medical use. Clodronate and tiludronate are bisphosphonates approved for the treatment of navicular syndrome in horses over four years old. However, these drugs are sometimes used in juvenile animals under exercise, where osteoclast activity is higher. Bisphosphonate use in juvenile and/or exercising animals could have adverse effects, including maladaptation to exercise or accumulation of microdamage. Furthermore, bisphosphonates can be bound to the skeleton for several years, resulting in a prolonged effect with no pharmaceutical reversal available. This review presents an overview of osteoclast function and a review of bisphosphonate characteristics, mechanisms of action, and side effects in order to contextualize the potential for adverse/side effects in young or exercising animals. Abstract Osteoclasts are unique and vital bone cells involved in bone turnover. These cells are active throughout the individual’s life and play an intricate role in growth and remodeling. However, extra-label bisphosphonate use may impair osteoclast function, which could result in skeletal microdamage and impaired healing without commonly associated pain, affecting bone remodeling, fracture healing, and growth. These effects could be heightened when administered to growing and exercising animals. Bisphosphonates (BPs) are unevenly distributed in the skeleton; blood supply and bone turnover rate determine BPs uptake in bone. Currently, there is a critical gap in scientific knowledge surrounding the biological impacts of BP use in exercising animals under two years old. This may have significant welfare ramifications for growing and exercising equids. Therefore, future research should investigate the effects of these drugs on skeletally immature horses.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Aimee C. Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Ave, East Lansing, MI 48864, USA
- Correspondence:
| |
Collapse
|
7
|
Malek G, Richard H, Beauchamp G, Laverty S. An in vitro model for discovery of osteoclast specific biomarkers towards identification of racehorses at risk for catastrophic fractures. Equine Vet J 2022; 55:534-550. [PMID: 35616632 DOI: 10.1111/evj.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Focal bone microcracks with osteoclast recruitment and bone lysis, may reduce fracture resistance in racehorses. As current imaging does not detect all horses at risk for fracture, the discovery of novel serum biomarkers of bone resorption or osteoclast activity could potentially address this unmet clinical need. The biology of equine osteoclasts on their natural substrate, equine bone, has never been studied in vitro and may permit identification of specific biomarkers of their activity. OBJECTIVES 1) Establish osteoclast cultures on equine bone, 2) Measure biomarkers (tartrate resistant acid phosphatase isoform 5b (TRACP-5b) and C-terminal telopeptide of type I collagen (CTX-I)) in vitro and 3) Study the effects of inflammation. STUDY DESIGN In vitro experiments. METHODS Haematopoietic stem cells, from 5 equine sternal bone marrow aspirates, were differentiated into osteoclasts and cultured either alone or on equine bone slices, with or without pro-inflammatory stimulus (IL-1β or LPS). CTX-I and TRACP-5b were immunoassayed in the media. Osteoclast numbers and bone resorption area were assessed. RESULTS TRACP-5b increased over time without bone (p < 0.0001) and correlated with osteoclast number (r = 0.63, p < 0.001). CTX-I and TRACP-5b increased with time for cultures with bone (p = 0.002; p = 0.02 respectively), correlated with each other (r = 0.64, p < 0.002) and correlated with bone resorption (r = 0.85, p < 0.001; r = 0.82, p < 0.001 respectively). Inflammation had no measurable effects. MAIN LIMITATIONS Specimen numbers limited. CONCLUSIONS Equine osteoclasts were successfully cultured on equine bone slices and their bone resorption quantified. TRACP-5b was shown to be a biomarker of equine osteoclast number and bone resorption for the first time; CTX-I was also confirmed to be a biomarker of equine bone resorption in vitro. This robust equine specific in vitro assay will help the study of osteoclast biology.
Collapse
Affiliation(s)
- Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Guy Beauchamp
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| |
Collapse
|
8
|
Fortin-Trahan R, Lemirre T, Santschi EM, Janes JG, Richard H, Fogarty U, Beauchamp G, Girard CA, Laverty S. Osteoclast density is not increased in bone adjacent to radiolucencies (cysts) in juvenile equine medial femoral condyles. Equine Vet J 2021; 54:989-998. [PMID: 34716940 DOI: 10.1111/evj.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a knowledge gap about how equine MFC subchondral radiolucencies (SR) arise and evolve. Osteoclasts are believed to have a role but have not been studied in situ. OBJECTIVES To measure and compare osteoclast density and the percentage of chondroclasts in healthy and MFC SR specimens from juvenile Thoroughbreds. STUDY DESIGN Cadaveric study. METHODS Medial femoral condyles (MFC) from a tissue bank of equine stifles were studied. Inclusion criteria were MFCs (≤8 months old) with a computed tomography SR lesion and histological focal failure of endochondral ossification (L group). Contralateral, lesion-free, MFCs were a control group (CC). Osteochondral slabs were cut through the lesion (L), a healthy site immediately caudal to the lesion, (internal control; IC) and the contralateral, site-matched controls (CC). Histological sections were immunostained with Cathepsin K for osteoclast counting. Osteoclasts in contact with the growth cartilage (chondroclasts) were also counted. The sections were segmented into regions of interest (ROI) at different depths in the subchondral bone: ROI1 (0-1 mm), ROI2 (1-3 mm) and ROI3 (3-6 mm). Osteoclasts were counted and the bone area was measured in each ROI to calculate their density. Chondroclasts were counted in ROI1 . RESULTS Sections were studied from L and IC (n = 6) and CC sites (n = 5). Osteoclast density was significantly higher in ROI1 when compared with ROI3 in all groups. Although higher osteoclast density was measured in ROI1 in the L group, no significant differences were detected when compared with control ROIs. The proportion of chondroclasts in ROI1 was lower in the L sections when compared with controls but no significant differences were detected. MAIN LIMITATIONS Limited sample size. CONCLUSIONS Osteoclasts are important actors in MFC subchondral bone development, digesting both growth cartilage (chondroclasts) and bone, but the pathophysiology of early MFC SRs cannot be explained solely by an increased osteoclast presence in the subchondral bone.
Collapse
Affiliation(s)
- Rosalie Fortin-Trahan
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Thibaut Lemirre
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Elizabeth M Santschi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jennifer G Janes
- Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | - Guy Beauchamp
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Christiane A Girard
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
9
|
Thoroughbred Racehorse Welfare through the Lens of ‘Social License to Operate—With an Emphasis on a U.S. Perspective. SUSTAINABILITY 2020. [DOI: 10.3390/su12051706] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review addresses the question of whether Thoroughbred horse racing is sustainable in the context of current social values. A recently acknowledged framework, known as ‘Social License to Operate’ (SLO), provides us with a lens through which to view and assess racehorse welfare. In multiple surveys of the general public, the horse owning public, and university students, the primary topics of concern regarding Thoroughbred racing show considerable concordance: concern about catastrophic injuries—particularly as related to track surfaces, concern over the racing of two-year-olds, whip use by jockeys, drug/medication policies, and aftercare opportunities for retired Thoroughbred racehorses. Legitimacy of an industry, consent from industry stakeholders, and trust between the community players, are all essential to have and maintain SLO. In the current era of 24/7 global media access, and the proliferation of social media providing an interactive platform for all interested parties, a dramatic change has occurred in commentary related to racehorse welfare concerns. The situation at Santa Anita (California, USA) from late December 2018 through mid-November 2019 demonstrated just how tenuous the SLO for horse racing is. This article will provide a brief review of what ‘Social License to Operate’ is, along with a brief literature review of five of the areas of primary concern voiced by stakeholders.
Collapse
|