1
|
Laus F, Bazzano M, Spaterna A, Laghi L, Marchegiani A. Nuclear Magnetic Resonance (NMR) Metabolomics: Current Applications in Equine Health Assessment. Metabolites 2024; 14:269. [PMID: 38786746 PMCID: PMC11123227 DOI: 10.3390/metabo14050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolomics can allow for the comprehensive identification of metabolites within biological systems, at given time points, in physiological and pathological conditions. In the last few years, metabolomic analysis has gained popularity both in human and in veterinary medicine, showing great potential for novel applications in clinical activity. The aim of applying metabolomics in clinical practice is understanding the mechanisms underlying pathological conditions and the influence of certain stimuli (i.e., drugs, nutrition, exercise) on body systems, in the attempt of identifying biomarkers that can help in the diagnosis of diseases. Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) is well tailored to be used as an analytical platform for metabolites' detection at the base of metabolomics studies, due to minimal sample preparation and high reproducibility. In this mini-review article, the scientific production of NMR metabolomic applications to equine medicine is examined. The research works are very different in methodology and difficult to compare. Studies are mainly focused on exercise, reproduction, and nutrition, other than respiratory and musculoskeletal diseases. The available information on this topic is still scant, but a greater collection of data could allow researchers to define new reliable markers to be used in clinical practice for diagnostic and therapeutical purposes.
Collapse
Affiliation(s)
- Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| |
Collapse
|
2
|
Cooke CG, Gibb Z, Grupen CG, Schemann K, Deshpande N, Harnett JE. Effect of probiotics and prebiotics on the composition of the equine fecal and seminal microbiomes and sperm quality: A pilot study. J Equine Vet Sci 2024; 135:105032. [PMID: 38401778 DOI: 10.1016/j.jevs.2024.105032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Probiotic and prebiotic effects on equine semen and gastrointestinal microbiome composition and sperm quality are unknown. This study aimed to evaluate the effects of pre-, pro- or synbiotic supplementation on fecal and semen microbiome composition and sperm quality parameters of stallions. This Latin square crossover trial involved four miniature pony stallions receiving control diet only, or addition of a pro-, pre- or synbiotic formulation. Full-length 16S rRNA gene amplicon sequencing was used to measure diversity of semen and fecal microbiomes. Total sperm count, total motility, progressive motility, DNA integrity, lipid peroxidation and mitochondrial oxidative stress, biomarkers of sperm quality, were measured after each intervention. A general linear model was employed to analyse and compare microbiome diversity measures and sperm quality data across four time points. Shannon's diversity index (alpha-diversity), and evenness of semen and gastrointestinal microbiomes were significantly different (p<0.001). A trend was observed for prebiotic effects on the diversity indices of the GI microbiome (p= 0.07). No effects of treatments were observed on either semen microbiome or sperm quality. Pre-, pro- and synbiotic supplements showed no negative effect on sperm quality parameters observed. This proof of concept provides preliminary data to inform future studies exploring the relationship between microbiomes and fertility.
Collapse
Affiliation(s)
- C Giselle Cooke
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Kathrin Schemann
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nandan Deshpande
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joanna E Harnett
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Li J, Toyama H, Matsumoto T, Qasimi MI, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Changes in fecal microbiota during estrous cycle in healthy thoroughbred mares. J Equine Vet Sci 2024; 135:105034. [PMID: 38428754 DOI: 10.1016/j.jevs.2024.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota plays a crucial role in various physiological processes, including the regulation of the reproductive system and steroid sex hormones. Throughout the normal estrous cycle of healthy mares, the levels of estradiol-17β (E2) and progesterone (P4) in the blood exhibit periodic changes. To investigate the relationship between cyclic changes in steroid sex hormones and the gut microbiome of mares, we analyzed the fecal microbiota composition in healthy mares during the typical estrous cycle. Blood and fecal samples from five healthy mares were collected, E2 and P4 levels in serum were analyzed using radioimmunoassay (RIA), and the gut microbiome was analyzed by 16S rRNA sequencing. The overall richness and composition of the gut microbiota remained relatively stable during the normal estrous cycle in mares. The Linear Discriminant Analysis Effect Size analysis of the microbial composition during the follicular and luteal phases identified the Rhodococcus genus as differentially abundant. These findings indicate that the mare's gut microbiota's significant composition remains consistent throughout the estrous cycle. At the same time, specific low-abundance pathogenic bacteria exhibit changes that align with sexual hormonal fluctuations.
Collapse
Affiliation(s)
- Junjie Li
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Touko Matsumoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mohammad Ibrahim Qasimi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Fecal Microbiota Comparison between Healthy Teaching Horses and Client-Owned Horses. J Equine Vet Sci 2022; 118:104105. [PMID: 36058504 DOI: 10.1016/j.jevs.2022.104105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the fecal microbiota of 2 healthy teaching horse herds with that of client-owned horses from the same geographic areas. The fecal microbiota of client-owned horses from Ontario Canada (n = 15) and Florida, USA (n = 11) was compared with that teaching horses from the University of Guelph, Ontario, Canada (n = 10) and the University of Florida, Florida, USA (n = 15). The fecal microbiota was characterized by sequencing of bacterial DNA using the V4 hypervariable region of the 16S rRNA gene. The diversity (inverse Simpson index) of the fecal microbiota was significantly higher in teaching than client owned horses from the same geographical area (P < 0.05). The community membership (Jaccard Index) and structure (Yue and Clayton index) of teaching horses was also significantly different from that of client owned horses from the same geographical area (AMOVA P < 0.001). The bacterial membership and structure of the fecal microbiota of Ontario and Florida teaching horses were significantly different, while the bacterial membership, but not the structure of Ontario and Florida client owned horses was significantly different (AMOVA P < 0.001). In all 4 groups of healthy horses, Lachnospiraceae, Ruminococcaceae, Bacteroidales, Clostridiales, and Treponema were detected in high relative abundance. The fecal microbiota of healthy horses from teaching herds kept in the same environment with identical management practices differs significantly from that of horses housed in different facilities with dissimilar management practices. Our results suggest an effect of the environment and management practices on the gastrointestinal microbiota. Researchers should attempt to include healthy horses from the same farm with similar management as control groups when comparing with diseased horses.
Collapse
|