1
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Abdelaziz M, Muñoz-Pajares AJ, Berbel M, García-Muñoz A, Gómez JM, Perfectti F. Asymmetric Reproductive Barriers and Gene Flow Promote the Rise of a Stable Hybrid Zone in the Mediterranean High Mountain. FRONTIERS IN PLANT SCIENCE 2021; 12:687094. [PMID: 34512685 PMCID: PMC8424041 DOI: 10.3389/fpls.2021.687094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
Hybrid zones have the potential to shed light on evolutionary processes driving adaptation and speciation. Secondary contact hybrid zones are particularly powerful natural systems for studying the interaction between divergent genomes to understand the mode and rate at which reproductive isolation accumulates during speciation. We have studied a total of 720 plants belonging to five populations from two Erysimum (Brassicaceae) species presenting a contact zone in the Sierra Nevada mountains (SE Spain). The plants were phenotyped in 2007 and 2017, and most of them were genotyped the first year using 10 microsatellite markers. Plants coming from natural populations were grown in a common garden to evaluate the reproductive barriers between both species by means of controlled crosses. All the plants used for the field and greenhouse study were characterized by measuring traits related to plant size and flower size. We estimated the genetic molecular variances, the genetic differentiation, and the genetic structure by means of the F-statistic and Bayesian inference. We also estimated the amount of recent gene flow between populations. We found a narrow unimodal hybrid zone where the hybrid genotypes appear to have been maintained by significant levels of a unidirectional gene flow coming from parental populations and from weak reproductive isolation between them. Hybrid plants exhibited intermediate or vigorous phenotypes depending on the analyzed trait. The phenotypic differences between the hybrid and the parental plants were highly coherent between the field and controlled cross experiments and through time. The highly coherent results obtained by combining field, experimental, and genetic data demonstrate the existence of a stable and narrow unimodal hybrid zone between Erysimum mediohispanicum and Erysimum nevadense at the high elevation of the Sierra Nevada mountains.
Collapse
Affiliation(s)
- Mohamed Abdelaziz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- *Correspondence: Mohamed Abdelaziz
| | - A. Jesús Muñoz-Pajares
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Laboratório Associado, Plant Biology, Research Centre in Biodiversity and Genetic Resources, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade Do Porto, Campus Agrário de Vairão, Fornelo e Vairão, Portugal
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Modesto Berbel
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - Ana García-Muñoz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - José M. Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almeria, Spain
| | - Francisco Perfectti
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| |
Collapse
|
4
|
Wong ELY, Nevado B, Osborne OG, Papadopulos AST, Bridle JR, Hiscock SJ, Filatov DA. Strong divergent selection at multiple loci in two closely related species of ragworts adapted to high and low elevations on Mount Etna. Mol Ecol 2019; 29:394-412. [PMID: 31793091 DOI: 10.1111/mec.15319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome-wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly-differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs' allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16-0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species - pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Owen G Osborne
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Osborne OG, Chapman MA, Nevado B, Filatov DA. Maintenance of Species Boundaries Despite Ongoing Gene Flow in Ragworts. Genome Biol Evol 2016; 8:1038-47. [PMID: 26979797 PMCID: PMC4860686 DOI: 10.1093/gbe/evw053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
The role of hybridization between diversifying species has been the focus of a huge amount of recent evolutionary research. While gene flow can prevent speciation or initiate species collapse, it can also generate new hybrid species. Similarly, while adaptive divergence can be wiped out by gene flow, new adaptive variation can be introduced via introgression. The relative frequency of these outcomes, and indeed the frequency of hybridization and introgression in general are largely unknown. One group of closely-related species with several documented cases of hybridization is the Mediterranean ragwort (genus: Senecio) species-complex. Examples of both polyploid and homoploid hybrid speciation are known in the clade, although their evolutionary relationships and the general frequency of introgressive hybridization among them remain unknown. Using a whole genome gene-space dataset comprising eight Senecio species we fully resolve the phylogeny of these species for the first time despite phylogenetic incongruence across the genome. Using a D-statistic approach, we demonstrate previously unknown cases of introgressive hybridization between multiple pairs of taxa across the species tree. This is an important step in establishing these species as a study system for diversification with gene flow, and suggests that introgressive hybridization may be a widespread and important process in plant evolution.
Collapse
Affiliation(s)
- Owen G Osborne
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Berkshire, United Kingdom
| | - Mark A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom Department of Life Sciences, Imperial College London - Silwood Park Campus, Berkshire, United Kingdom Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Menon M, Barnes WJ, Olson MS. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. THE NEW PHYTOLOGIST 2015; 207:710-22. [PMID: 25809016 DOI: 10.1111/nph.13381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/16/2015] [Indexed: 05/07/2023]
Abstract
Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.
Collapse
Affiliation(s)
- Mitra Menon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - William J Barnes
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
7
|
Combes MC, Hueber Y, Dereeper A, Rialle S, Herrera JC, Lashermes P. Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biol Evol 2015; 7:1110-21. [PMID: 25819221 PMCID: PMC4419803 DOI: 10.1093/gbe/evv057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history.
Collapse
Affiliation(s)
| | | | | | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier Cédex 5, France
| | - Juan-Carlos Herrera
- Centro Nacional de Investigaciones de Cafe, CENICAFE - FNC, Manizales, Colombia
| | | |
Collapse
|
8
|
Abbott RJ, Brennan AC. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130346. [PMID: 24958920 PMCID: PMC4071520 DOI: 10.1098/rstb.2013.0346] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altitudinal gradients are characterized by steep changes of the physical and biotic environment that present challenges to plant adaptation throughout large parts of the world. Hybrid zones may form where related species inhabit different neighbouring altitudes and can facilitate interspecific gene flow and potentially the breakdown of species barriers. Studies of such hybrid zones can reveal much about the genetic basis of adaptation to environmental differences stemming from changes in altitude and the maintenance of species divergence in the face of gene flow. Furthermore, owing to recombination and transgressive effects, such hybrid zones can be sources of evolutionary novelty. We document plant hybrid zones associated with altitudinal gradients and emphasize similarities and differences in their structure. We then focus on recent studies of a hybrid zone between two Senecio species that occur at high and low altitude on Mount Etna, Sicily, showing how adaptation to local environments and intrinsic selection against hybrids act to maintain it. Finally, we consider the potential of altitudinal hybrid zones for generating evolutionary novelty through adaptive introgression and hybrid speciation. Examples of homoploid hybrid species of Senecio and Pinus that originated from altitudinal hybrid zones are discussed.
Collapse
Affiliation(s)
- Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - Adrian C Brennan
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
9
|
Osborne OG, Batstone TE, Hiscock SJ, Filatov DA. Rapid speciation with gene flow following the formation of Mt. Etna. Genome Biol Evol 2014; 5:1704-15. [PMID: 23973865 PMCID: PMC3787679 DOI: 10.1093/gbe/evt127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Environmental or geological changes can create new niches that drive ecological species divergence without the immediate cessation of gene flow. However, few such cases have been characterized. On a recently formed volcano, Mt. Etna, Senecio aethnensis and S. chrysanthemifolius inhabit contrasting environments of high and low altitude, respectively. They have very distinct phenotypes, despite hybridizing promiscuously, and thus may represent an important example of ecological speciation “in action,” possibly as a response to the rapid geological changes that Mt. Etna has recently undergone. To elucidate the species’ evolutionary history, and help establish the species as a study system for speciation genomics, we sequenced the transcriptomes of the two Etnean species, and the outgroup, S. vernalis, using Illumina sequencing. Despite the species’ substantial phenotypic divergence, synonymous divergence between the high- and low-altitude species was low (dS = 0.016 ± 0.017 [SD]). A comparison of species divergence models with and without gene flow provided unequivocal support in favor of the former and demonstrated a recent time of species divergence (153,080 ya ± 11,470 [SE]) that coincides with the growth of Mt. Etna to the altitudes that separate the species today. Analysis of dN/dS revealed wide variation in selective constraint between genes, and evidence that highly expressed genes, more “multifunctional” genes, and those with more paralogs were under elevated purifying selection. Taken together, these results are consistent with a model of ecological speciation, potentially as a response to the emergence of a new, high-altitude niche as the volcano grew.
Collapse
Affiliation(s)
- Owen G Osborne
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
10
|
Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two Senecio species that form a hybrid zone on Mount Etna, Sicily. Heredity (Edinb) 2014; 113:195-204. [PMID: 24595365 DOI: 10.1038/hdy.2014.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/27/2023] Open
Abstract
Studies of hybridizing species can reveal much about the genetic basis and maintenance of species divergence in the face of gene flow. Here we report a genetic segregation and linkage analysis conducted on F2 progeny of a reciprocal cross between Senecio aethnensis and S. chrysanthemifolius that form a hybrid zone on Mount Etna, Sicily, aimed at determining the genetic basis of intrinsic hybrid barriers between them. Significant transmission ratio distortion (TRD) was detected at 34 (∼27%) of 127 marker loci located in nine distinct clusters across seven of the ten linkage groups detected, indicating genomic incompatibility between the species. TRD at these loci could not be attributed entirely to post-zygotic selective loss of F2 individuals that failed to germinate or flower (16.7%). At four loci tests indicated that pre-zygotic events, such as meiotic drive in F1 parents or gametophytic selection, contributed to TRD. Additional tests revealed that cytonuclear incompatibility contributed to TRD at five loci, Bateson-Dobzhansky-Muller (BDM) incompatibilities involving epistatic interactions between loci contributed to TRD at four loci, and underdominance (heterozygote disadvantage) was a possible cause of TRD at one locus. Major chromosomal rearrangements were probably not a cause of interspecific incompatibility at the scale that could be examined with current map marker density. Intrinsic genomic incompatibility between S. aethnensis and S. chrysanthemifolius revealed by TRD across multiple genomic regions in early-generation hybrids is likely to impact the genetic structure of the natural hybrid zone on Mount Etna by limiting introgression and promoting divergence across the genome.
Collapse
|
11
|
Chapman MA, Hiscock SJ, Filatov DA. Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol 2013; 30:2553-67. [PMID: 24077768 PMCID: PMC3840311 DOI: 10.1093/molbev/mst168] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Even though Darwin's "On the Origin of Species" implied selection being the main driver of species formation, the role of natural selection in speciation remains poorly understood. In particular, it remains unclear how selection at a few genes can lead to genomewide divergence and the formation of distinct species. We used a particularly attractive clear-cut case of recent plant ecological speciation to investigate the demography and genomic bases of species formation driven by adaptation to contrasting conditions. High-altitude Senecio aethnensis and low-altitude S. chrysanthemifolius live at the extremes of a mountain slope on Mt. Etna, Sicily, and form a hybrid zone at intermediate altitudes but remain morphologically distinct. Genetic differentiation of these species was analyzed at the DNA polymorphism and gene expression levels by high-throughput sequencing of transcriptomes from multiple individuals. Out of ≈ 18,000 genes analyzed, only a small number (90) displayed differential expression between the two species. These genes showed significantly elevated species differentiation (FST and Dxy), consistent with diversifying selection acting on these genes. Genomewide genetic differentiation of the species is surprisingly low (FST = 0.19), while ≈ 200 genes showed significantly higher (false discovery rate < 1%; mean outlier FST > 0.6) interspecific differentiation and evidence for local adaptation. Diversifying selection at only a handful of loci may be enough for the formation and maintenance of taxonomically well-defined species, despite ongoing gene flow. This provides an explanation of why many closely related species (in plants, in particular) remain phenotypically and ecologically distinct despite ongoing hybridization, a question that has long puzzled naturalists and geneticists alike.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|