1
|
Marcel H, Javier MGJ, Emilio C, Roman H, Jose Luis RL. Seed shape and size of Silene latifolia, differences between sexes, and influence of the parental genome in hybrids with Silene dioica. FRONTIERS IN PLANT SCIENCE 2024; 15:1297676. [PMID: 38529065 PMCID: PMC10961389 DOI: 10.3389/fpls.2024.1297676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
Introduction Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. Methods Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. Results We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. Discussion Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.
Collapse
Affiliation(s)
- Hubinský Marcel
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Cervantes Emilio
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA)-CSIC, Salamanca, Spain
| | - Hobza Roman
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Rodríguez Lorenzo Jose Luis
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
2
|
Li W, Fu W, Hou J, Yang Y, Yin T. Evolution of plant sex and molecular mechanisms underlying plants sex separation. FORESTRY RESEARCH 2023; 3:1. [PMID: 39526260 PMCID: PMC11524252 DOI: 10.48130/fr-2023-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 11/16/2024]
Abstract
Unlike animals, plants exhibit more complexity of sexual morphs. The genetic mechanism underlying plant sex is a hot research topic in plant biology. In recent decades, advanced theories have been put forth on plant sex determination, but experimental proof is scarce. In recent years, vast achievements have been made to reveal the genetic mechanisms underlying sex separation of plants at the molecular level. Although the sex determination mechanisms have been clarified only in a limited number of plant species thus far, the discoveries offer us an opportunity to understand the genetic mechanisms triggering the separation of plant sexes. This paper reviewed the different aspects of the advanced studies on plant sex evolution and the molecular mechanisms underlying plant sex separation.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape and Horticulture, Yangzhou Polytechnic College, Yangzhou 225009, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225012, China
| | - Wei Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Zluvova J, Kubat Z, Hobza R, Janousek B. Adaptive changes of the autosomal part of the genome in a dioecious clade of Silene. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210228. [PMID: 35306886 PMCID: PMC8935319 DOI: 10.1098/rstb.2021.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genus Silene brings many opportunities for the study of various processes involved in the evolution of dioecy and young sex chromosomes. Here we focus on a dioecious clade in Silene subgenus Silene and closely related species. This study provides improved support for monophyly of this clade (based on inclusion of further dioecious species) and a new estimate of its age (ca 2.3 million years). We observed a rise in adaptive evolution in the autosomal and pseudoautosomal parts of the genome on the branch where dioecy originated. This increase is not a result of the accumulation of sexually antagonistic genes in the pseudoautosomal region. It is also not caused by the coevolution of genes acting in mitochondria (despite the possibility that dioecy along this branch could have evolved from a nucleo-cytoplasmic male sterility-based system). After considering other possibilities, the most parsimonious explanation for the increase seen in the number of positively selected codons is the adaptive evolution of genes involved in the adaptation of the autosomal part of the genome to dioecy, as described in Charnov's sex-allocation theory. As the observed coincidence cannot prove causality, studies in other dioecious clades are necessary to allow the formation of general conclusions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| |
Collapse
|
4
|
Kučera J, Svitok M, Gbúrová Štubňová E, Mártonfiová L, Lafon Placette C, Slovák M. Eunuchs or Females? Causes and Consequences of Gynodioecy on Morphology, Ploidy, and Ecology of Stellaria graminea L. (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:589093. [PMID: 33912199 PMCID: PMC8072285 DOI: 10.3389/fpls.2021.589093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Plant speciation results from intricate processes such as polyploidization, reproductive strategy shifts and adaptation. These evolutionary processes often co-occur, blurring their respective contributions and interactions in the speciation continuum. Here, relying on a large-scale study, we tested whether gynodioecy triggers the divergent evolution of flower morphology and genome between sexes, and contributes to the establishment of polyploids and colonization of ecological niches in Stellaria graminea. We found that gynodioecy in S. graminea leads to flower morphology divergence between females and hermaphrodites, likely due to sexual selection. Contrary to our expectations, gynodioecy occurs evenly in diploids and tetraploids, suggesting that this reproductive strategy was not involved in the establishment of polyploids. Both diploid and tetraploid females have a larger genome size than hermaphrodites, suggesting the presence of sex chromosomes. Finally, ecology differs between cytotypes and to a lesser extent between sexes, suggesting that the link between environment and presence of females is indirect and likely explained by other aspects of the species' life history. Our study shows that gynodioecy leads to the consistent evolution of sexual traits across a wide range of populations, cytotypes and environments within a given species, and this likely contributes to the phenotypic and genetic distinctiveness of the species from its sister clades.
Collapse
Affiliation(s)
- Jaromír Kučera
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Eliška Gbúrová Štubňová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Slovak National Museum, Natural History Museum, Bratislava, Slovakia
| | | | | | - Marek Slovák
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Renner SS, Müller NA. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. NATURE PLANTS 2021; 7:392-402. [PMID: 33782581 DOI: 10.1038/s41477-021-00884-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.
Collapse
Affiliation(s)
- Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany.
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
6
|
Muyle A, Martin H, Zemp N, Mollion M, Gallina S, Tavares R, Silva A, Bataillon T, Widmer A, Glémin S, Touzet P, Marais GAB. Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus Silene. Mol Biol Evol 2021; 38:805-818. [PMID: 32926156 PMCID: PMC7947750 DOI: 10.1093/molbev/msaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end. This hypothesis has been recently challenged by macroevolutionary analyses that detected no or even positive effect of dioecy on diversification. However, the possible genetic consequences of dioecy at the population level, which could drive the long-term fate of dioecious lineages, have not been tested so far. Here, we used a population genomics approach in the Silene genus to look for possible effects of dioecy, especially for potential evidence of evolutionary handicaps of dioecy underlying the dead-end hypothesis. We collected individual-based RNA-seq data from several populations in 13 closely related species with different sexual systems: seven dioecious, three hermaphroditic, and three gynodioecious species. We show that dioecy is associated with increased genetic diversity, as well as higher selection efficacy both against deleterious mutations and for beneficial mutations. The results hold after controlling for phylogenetic inertia, differences in species census population sizes and geographic ranges. We conclude that dioecious Silene species neither show signs of increased mutational load nor genetic evidence for extinction risk. We discuss these observations in the light of the possible demographic differences between dioecious and self-compatible hermaphroditic species and how this could be related to alternatives to the dead-end hypothesis to explain the rarity of dioecy.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
| | - Hélène Martin
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
- Département de Biologie, Institut de Biologie Integrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Niklaus Zemp
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Maéva Mollion
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Sophie Gallina
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Alexandre Silva
- Centro de Interpretação da Serra da Estrela (CISE), Seia, Portugal
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Sylvain Glémin
- CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)]—UMR 6553, University of Rennes, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Touzet
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Neves CJ, Matzrafi M, Thiele M, Lorant A, Mesgaran MB, Stetter MG. Male Linked Genomic Region Determines Sex in Dioecious Amaranthus palmeri. J Hered 2020; 111:606-612. [PMID: 33340320 PMCID: PMC7846199 DOI: 10.1093/jhered/esaa047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well-suited model system to study sex determination in plants. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole-genome sequencing of male and female pools from 2 independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex-linked genes. Consequently, we employed an alignment-free k-mer comparison which enabled us to identify a large number of male-specific k-mers. We assembled male-specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex-determination system in the species. We were able to identify the potential Y chromosome in the A. palmeri draft genome sequence as 90% of our male-specific sequence aligned to a single scaffold. Based on our findings, we suggest an intermediate evolutionary state of dioecy with a young Y chromosome in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.
Collapse
Affiliation(s)
- Cátia José Neves
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Maor Matzrafi
- Department of Plant Sciences, University of California, Davis, Davis, CA.,Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Meik Thiele
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Martín-Gómez JJ, Rewicz A, Rodríguez-Lorenzo JL, Janoušek B, Cervantes E. Seed Morphology in Silene Based on Geometric Models. PLANTS 2020; 9:plants9121787. [PMID: 33339395 PMCID: PMC7766405 DOI: 10.3390/plants9121787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
Seed description in morphology is often based on adjectives such as “spherical”, “globular”, or “reniform”, but this does not provide a quantitative method. A new morphological approach based on the comparison of seed images with geometric models provides a seed description in Silene species on a quantitative basis. The novelty of the proposed method is based in the comparison of the seed images with geometric models according to a cardioid shape. The J index is a measurement that indicates the seed percentage of similarity with a cardioid or cardioid-derived figures used as models. The seeds of Silene species have high values of similarity with the cardioid and cardioid-derived models (J index superior to 90). The comparison with different figures allows species description and differentiation. The method is applied here to seeds of 21 species and models are proposed for some of them including S. diclinis, an endangered species. The method is discussed in the context of previous comparison with the measures used in traditional morphometric analysis. The similarity of seed images with geometric figures opens a new perspective for the automatized taxonomical evaluation of samples linking seed morphology to functional traits in endangered Silene species.
Collapse
Affiliation(s)
| | - Agnieszka Rewicz
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, 1/3 Banacha Str., 90-237 Lodz, Poland;
| | - José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (J.L.R.-L.); (B.J.)
| | - Bohuslav Janoušek
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (J.L.R.-L.); (B.J.)
| | - Emilio Cervantes
- IRNASA-CSIC, Cordel de Merinas 40, 37008 Salamanca, Spain;
- Correspondence:
| |
Collapse
|
9
|
Baránková S, Pascual-Díaz JP, Sultana N, Alonso-Lifante MP, Balant M, Barros K, D'Ambrosio U, Malinská H, Peska V, Pérez Lorenzo I, Kovařík A, Vyskot B, Janoušek B, Garcia S. Sex-chrom, a database on plant sex chromosomes. THE NEW PHYTOLOGIST 2020; 227:1594-1604. [PMID: 32357248 DOI: 10.1111/nph.16635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/15/2023]
Affiliation(s)
- Simona Baránková
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Joan Pere Pascual-Díaz
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Nusrat Sultana
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Botany, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Maria Pilar Alonso-Lifante
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Manica Balant
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Karina Barros
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Ugo D'Ambrosio
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Hana Malinská
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iván Pérez Lorenzo
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Bohuslav Janoušek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
11
|
Balounova V, Gogela R, Cegan R, Cangren P, Zluvova J, Safar J, Kovacova V, Bergero R, Hobza R, Vyskot B, Oxelman B, Charlesworth D, Janousek B. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci Rep 2019; 9:1045. [PMID: 30705300 PMCID: PMC6355844 DOI: 10.1038/s41598-018-37412-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022] Open
Abstract
Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.
Collapse
Affiliation(s)
- Veronika Balounova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Roman Gogela
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, Cologne, Germany
| | - Roberta Bergero
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
12
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
13
|
Wadlington WH, Ming R. Development of an X-specific marker and identification of YY individuals in spinach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1987-1994. [PMID: 29971471 DOI: 10.1007/s00122-018-3127-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Spinach is a popular vegetable native to central and western Asia. It is dioecious with a pair of nascent sex chromosomes. The difficulties of working with the non-recombining sex determination region of XY individuals have hindered the progress toward sequencing sex chromosomes of most dioecious species. Here we present important advances toward characterizing the non-recombining sex chromosomes in spinach. Of nearly 400 spinach accessions screened, we identified a single accession of spinach in which androdioecious XY individuals segregate YY spinach. The male and female genomes of the spinach cultivar Shami and USDA accession PI 664497 were sequenced at 12-17 × coverage. X-specific sequences were identified by comparing the depth of coverage differences between male and female alignments to a female draft genome. YY individuals were used as a negative control to validate X-specific markers found by depth of coverage analysis. Of 19 possible X chromosome sequences found by depth of coverage analysis, one was verified to be X-specific by a PCR-based marker, SpoX, which amplified genomic DNA from XX and XY, but not YY templates. Androdioecious XY individuals of accession PI 217425 (Cornell #9) were used to develop inbred lines, and at S7 generation, all XY individuals were androdioecious and all YY individuals were pure male. The sex reversal of the XY mutant to hermaphrodite is strong evidence that the sex chromosomes in spinach have a two-gene sex determination system. These results are crucial towards sequencing the X and Y chromosomes to advance sex chromosome research in spinach.
Collapse
Affiliation(s)
- William H Wadlington
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol 2018; 16:e2006062. [PMID: 30148831 PMCID: PMC6128632 DOI: 10.1371/journal.pbio.2006062] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/07/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
Turnovers of sex-determining systems represent important diversifying forces across eukaryotes. Shifts in sex chromosomes—but conservation of the master sex-determining genes—characterize distantly related animal lineages. Yet in plants, in which separate sexes have evolved repeatedly and sex chromosomes are typically homomorphic, we do not know whether such translocations drive sex-chromosome turnovers within closely related taxonomic groups. This phenomenon can only be demonstrated by identifying sex-associated nucleotide sequences, still largely unknown in plants. The wild North American octoploid strawberries (Fragaria) exhibit separate sexes (dioecy) with homomorphic, female heterogametic (ZW) inheritance, yet sex maps to three different chromosomes in different taxa. To characterize these turnovers, we identified sequences unique to females and assembled their reads into contigs. For most octoploid Fragaria taxa, a short (13 kb) sequence was observed in all females and never in males, implicating it as the sex-determining region (SDR). This female-specific “SDR cassette” contains both a gene with a known role in fruit and pollen production and a novel retrogene absent on Z and autosomal chromosomes. Phylogenetic comparison of SDR cassettes revealed three clades and a history of repeated translocation. Remarkably, the translocations can be ordered temporally due to the capture of adjacent sequence with each successive move. The accumulation of the “souvenir” sequence—and the resultant expansion of the hemizygous SDR over time—could have been adaptive by locking genes into linkage with sex. Terminal inverted repeats at the insertion borders suggest a means of movement. To our knowledge, this is the first plant SDR shown to be translocated, and it suggests a new mechanism (“move-lock-grow”) for expansion and diversification of incipient sex chromosomes. Sex chromosomes frequently restructure themselves during organismal evolution, often becoming highly differentiated. This dynamic process is poorly understood for most taxa, especially during the early stages typical of many dioecious flowering plants. We show that in wild strawberries, a female-specific region of DNA is associated with sex and has repeatedly changed its genomic location, each time increasing the size of the hemizygous female-specific sequence on the W sex chromosome. This observation shows, for the first time to our knowledge, that plant sex regions can “jump” and suggests that this phenomenon may be adaptive by gathering and locking new genes into linkage with sex. This conserved and presumed causal sex-determining sequence, which varies in both genomic location and degree of differentiation, will facilitate future studies to understand how sex chromosomes first begin to differentiate.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shannon C. K. Straub
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Scott MF, Osmond MM, Otto SP. Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biol 2018; 16:e2005609. [PMID: 29940019 PMCID: PMC6042799 DOI: 10.1371/journal.pbio.2005609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Sex determination is remarkably dynamic; many taxa display shifts in the location of sex-determining loci or the evolution of entirely new sex-determining systems. Predominant theories for why we observe such transitions generally conclude that novel sex-determining systems are favoured by selection if they equalise the sex ratio or increase linkage with a locus that experiences different selection in males versus females. We use population genetic models to extend these theories in two ways: (1) We consider the dynamics of loci very tightly linked to the ancestral sex-determining loci, e.g., within the nonrecombining region of the ancestral sex chromosomes. Variation at such loci can favour the spread of new sex-determining systems in which the heterogametic sex changes (XY to ZW or ZW to XY) and the new sex-determining region is less closely linked (or even unlinked) to the locus under selection. (2) We consider selection upon haploid genotypes either during gametic competition (e.g., pollen competition) or meiosis (i.e., nonmendelian segregation), which can cause the zygotic sex ratio to become biased. Haploid selection can drive transitions between sex-determining systems without requiring selection to act differently in diploid males versus females. With haploid selection, we find that transitions between male and female heterogamety can evolve so that linkage with the sex-determining locus is either strengthened or weakened. Furthermore, we find that sex ratio biases may increase or decrease with the spread of new sex chromosomes, which implies that transitions between sex-determining systems cannot be simply predicted by selection to equalise the sex ratio. In fact, under many conditions, we find that transitions in sex determination are favoured equally strongly in cases in which the sex ratio bias increases or decreases. Overall, our models predict that sex determination systems should be highly dynamic, particularly when haploid selection is present, consistent with the evolutionary lability of this trait in many taxa.
Collapse
Affiliation(s)
- Michael Francis Scott
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Miles Osmond
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Perin Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes. Genes (Basel) 2018; 9:genes9050234. [PMID: 29751495 PMCID: PMC5977174 DOI: 10.3390/genes9050234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/30/2023] Open
Abstract
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.
Collapse
|
17
|
Wei N, Govindarajulu R, Tennessen JA, Liston A, Ashman TL. Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry. J Hered 2018; 108:731-739. [PMID: 29036451 DOI: 10.1093/jhered/esx077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/20/2017] [Indexed: 11/12/2022] Open
Abstract
With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR.
Collapse
Affiliation(s)
- Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Department of Biology, West Virginia University, Morgantown, WV 26505
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
18
|
Impact of Repetitive Elements on the Y Chromosome Formation in Plants. Genes (Basel) 2017; 8:genes8110302. [PMID: 29104214 PMCID: PMC5704215 DOI: 10.3390/genes8110302] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.
Collapse
|
19
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
20
|
Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 2017; 71:1519-1531. [PMID: 28384386 DOI: 10.1111/evo.13245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co-occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Hélène Martin
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Pascal Touzet
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Mathilde Dufay
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Cécile Godé
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Eric Schmitt
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Emna Lahiani
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Lynda F Delph
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Fabienne Van Rossum
- Meise Botanic Garden (formerly National Botanic Garden of Belgium), Nieuwelaan 38, BE-1860, Meise, Belgium.,Écologie végétale et Biogéochimie, Université Libre de Bruxelles, CP244, Boulevard du Triomphe, BE-1050, Brussels, Belgium.,Fédération Wallonie-Bruxelles, rue A. Lavallée 1, BE-1080, Brussels, Belgium
| |
Collapse
|
21
|
Sousa A, Fuchs J, Renner SS. Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosome Res 2017; 25:191-200. [PMID: 28343268 DOI: 10.1007/s10577-017-9555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/26/2022]
Abstract
Our understanding of the evolution of plant sex chromosomes is increasing rapidly due to high-throughput sequencing data and phylogenetic and molecular-cytogenetic approaches that make it possible to infer the evolutionary direction and steps leading from homomorphic to heteromorphic sex chromosomes. Here, we focus on four species of Coccinia, a genus of 25 dioecious species, including Coccinia grandis, the species with the largest known plant Y chromosome. Based on a phylogeny for the genus, we selected three species close to C. grandis to test the distribution of eight repetitive elements including two satellites, and several plastid and mitochondrial probes, that we had previously found to have distinct accumulation patterns in the C. grandis genome. Additionally, we determined C-values and performed immunostaining experiments with (peri-)centromere-specific antibodies on two species (for comparison with C. grandis). In spite of no microscopic chromosomal heteromorphism, single pairs of chromosomes in male cells of all three species accumulate some of the very same repeats that are enriched on the C. grandis Y chromosome, pointing to either old (previous) sex chromosomes or incipient (newly arising) ones, that is, to sex chromosome turnover. A 144-bp centromeric satellite repeat (CgCent) that characterizes all C. grandis chromosomes except the Y is highly abundant in all centromeric regions of the other species, indicating that the centromeric sequence of the Y chromosome diverged very recently.
Collapse
Affiliation(s)
- Aretuza Sousa
- Department of Biology, University of Munich (LMU), 80638, Munich, Germany.
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Susanne S Renner
- Department of Biology, University of Munich (LMU), 80638, Munich, Germany.
| |
Collapse
|
22
|
Prieto-Benítez S, Millanes AM, Dötterl S, Giménez-Benavides L. Comparative analyses of flower scent in Sileneae
reveal a contrasting phylogenetic signal between night and day emissions. Ecol Evol 2016. [DOI: 10.1002/ece3.2377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samuel Prieto-Benítez
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Ana M. Millanes
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Stefan Dötterl
- Department of Ecology and Evolution; University of Salzburg; Hellbrunnerstr. 34 5020 Salzburg Austria
| | - Luis Giménez-Benavides
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| |
Collapse
|
23
|
Moore RC, Harkess AE, Weingartner LA. How to be a seXY plant model: A holistic view of sex-chromosome research. AMERICAN JOURNAL OF BOTANY 2016; 103:1379-1382. [PMID: 27370315 DOI: 10.3732/ajb.1600054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Richard C Moore
- Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056 USA
| | - Alex E Harkess
- University of Georgia, Department of Plant Biology, 120 Carlton St, Athens, Georgia 30602 USA
| | - Laura A Weingartner
- Indiana University, Department of Biology, 1001 E Third St., Bloomington, Indiana 47405 USA
| |
Collapse
|
24
|
Yakimowski SB, Barrett SCH. The role of hybridization in the evolution of sexual system diversity in a clonal, aquatic plant. Evolution 2016; 70:1200-11. [PMID: 27150128 DOI: 10.1111/evo.12941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/25/2023]
Abstract
The stable coexistence within populations of females, males, and hermaphrodites (subdioecy) is enigmatic because theoretical models indicate that maintenance of this sexual system involves highly restricted conditions. Subdioecy is more commonly interpreted as a transitory stage along the gynodioecious pathway from hermaphroditism to dioecy. The widespread, North American, aquatic plant Sagittaria latifolia is largely composed of monoecious or dioecious populations; however, subdioecious populations with high frequencies of hermaphrodites (mean frequency = 0.50) characterize the northern range boundary of dioecy in eastern North America. We investigated two hypotheses for the origin of subdioecy in this region. Using polymorphic microsatellite loci, we evaluated whether subdioecy arises through selection on standing genetic variation for male sex inconstancy in dioecious populations, or results from hybridization between monoecious and dioecious populations. We found evidence for both pathways to subdioecy, although hybridization was the more common mechanism, with genetic evidence of admixture in nine of 14 subdioecious populations examined. Hybridization has also played a role in the origin of androdioecious populations in S. latifolia, a mechanism not often considered in the evolution of this rare sexual system. Our study demonstrates how hybridization has the potential to play a role in the diversification of plant sexual systems.
Collapse
Affiliation(s)
- Sarah B Yakimowski
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada. .,Current Address: Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario, K7L 3N6, Canada.
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
25
|
Cherif E, Zehdi-Azouzi S, Crabos A, Castillo K, Chabrillange N, Pintaud JC, Salhi-Hannachi A, Glémin S, Aberlenc-Bertossi F. Evolution of sex chromosomes prior to speciation in the dioecious Phoenix
species. J Evol Biol 2016; 29:1513-22. [DOI: 10.1111/jeb.12887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- E. Cherif
- IRD/CIRAD F2F-palm group; UMR DIADE; Centre IRD; Montpellier France
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie; Faculté des sciences de Tunis; Université Tunis El Manar; El Manar Tunisia
| | - S. Zehdi-Azouzi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie; Faculté des sciences de Tunis; Université Tunis El Manar; El Manar Tunisia
| | - A. Crabos
- IRD/CIRAD F2F-palm group; UMR DIADE; Centre IRD; Montpellier France
| | - K. Castillo
- IRD/CIRAD F2F-palm group; UMR DIADE; Centre IRD; Montpellier France
| | - N. Chabrillange
- IRD/CIRAD F2F-palm group; UMR DIADE; Centre IRD; Montpellier France
| | | | - A. Salhi-Hannachi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie; Faculté des sciences de Tunis; Université Tunis El Manar; El Manar Tunisia
| | - S. Glémin
- Institut des Sciences de l'Evolution de Montpellier; Unité Mixte de Recherche 5554 (Université de Montpellier-CNRS-IRD-EPHE); Montpellier France
- Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | | |
Collapse
|
26
|
Abstract
Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
27
|
Vyskot B, Hobza R. The genomics of plant sex chromosomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:126-35. [PMID: 26025526 DOI: 10.1016/j.plantsci.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 05/18/2023]
Abstract
Around six percent of flowering species are dioecious, with separate female and male individuals. Sex determination is mostly based on genetics, but morphologically distinct sex chromosomes have only evolved in a few species. Of these, heteromorphic sex chromosomes have been most clearly described in the two model species - Silene latifolia and Rumex acetosa. In both species, the sex chromosomes are the largest chromosomes in the genome. They are hence easily distinguished, can be physically separated and analyzed. This review discusses some recent experimental data on selected model dioecious species, with a focus on S. latifolia. Phylogenetic analyses show that dioecy in plants originated independently and repeatedly even within individual genera. A cogent question is whether there is genetic degeneration of the non-recombining part of the plant Y chromosome, as in mammals, and, if so, whether reduced levels of gene expression in the heterogametic sex are equalized by dosage compensation. Current data provide no clear conclusion. We speculate that although some transcriptome analyses indicate the first signs of degeneration, especially in S. latifolia, the evolutionary processes forming plant sex chromosomes in plants may, to some extent, differ from those in animals.
Collapse
Affiliation(s)
- Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| |
Collapse
|
28
|
Casimiro-Soriguer I, Buide ML, Narbona E. Diversity of sexual systems within different lineages of the genus Silene. AOB PLANTS 2015; 7:plv037. [PMID: 25862920 PMCID: PMC4433491 DOI: 10.1093/aobpla/plv037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 05/15/2023]
Abstract
Species and populations can be categorized by their sexual systems, depending on the spatial distribution of female and male reproductive structures within and among plants. Although a high diversity of sexual systems exists in Silene, their relative frequency at the genus and infrageneric level is unknown. Here, we carried out an extensive literature search for direct or indirect descriptions of sexual systems in Silene species. We found descriptions of sexual systems for 98 Silene species, where 63 and 35 correspond to the phylogenetically supported subgenera Silene and Behenantha, respectively. Hermaphroditism was the commonest sexual system (58.2 %), followed by dioecy (14.3 %), gynodioecy (13.3 %) and gynodioecy-gynomonoecy (i.e. hermaphroditic, female and gynomonoecious plants coexisting in the same population; 12.2 %). The presence of these sexual systems in both subgenera suggests their multiple origins. In 17 species, the description of sexual systems varied, and in most cases these differences corresponded to variations within or among populations. Interestingly, the poorly studied gynodioecy-gynomonoecy sexual system showed similar frequency to dioecy and gynodioecy in both subgenera. In addition, the incidence of gynodioecy-gynomonoecy was analysed in the species of section Psammophilae (Silene littorea, S. psammitis, S. adscendens and S. cambessedesii), in a survey of 26 populations across the distribution area of the species. The four species showed gynomonoecy-gynodioecy in most populations. Hermaphrodites were the most frequent morph, with a low number of females and gynomonoecious plants in all populations. The frequency of sexual morphs varied significantly among the studied populations but not among species. Female plants generally produced smaller numbers of flowers than hermaphroditic or gynomonoecious plants, and the percentages of female flowers per population were low. All these findings suggest that the gynodioecious-gynomonoecious sexual system in section Psammophilae is closer to hermaphroditism or gynomonoecy than gynodioecy.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain Área de Botánica, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Maria L Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain
| | - Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain
| |
Collapse
|
29
|
Russell JRW, Pannell JR. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity (Edinb) 2015; 114:262-71. [PMID: 25335556 PMCID: PMC4815579 DOI: 10.1038/hdy.2014.95] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/09/2022] Open
Abstract
Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.
Collapse
Affiliation(s)
- J R W Russell
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - J R Pannell
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| |
Collapse
|
30
|
Pucholt P, Rönnberg-Wästljung AC, Berlin S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity (Edinb) 2015; 114:575-83. [PMID: 25649501 PMCID: PMC4434249 DOI: 10.1038/hdy.2014.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/17/2014] [Accepted: 11/27/2014] [Indexed: 01/20/2023] Open
Abstract
Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.
Collapse
Affiliation(s)
- P Pucholt
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - A-C Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - S Berlin
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|