1
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
2
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
3
|
Laugier F, Saumitou-Laprade P, Vernet P, Lepart J, Cheptou PO, Dufay M. Male fertility advantage within and between seasons in the perennial androdioecious plant Phillyrea angustifolia. ANNALS OF BOTANY 2023; 132:1219-1232. [PMID: 37930793 PMCID: PMC10902885 DOI: 10.1093/aob/mcad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND AIMS Androdioecy, the co-occurrence of males and hermaphrodites, is a rare reproductive system. Males can be maintained if they benefit from a higher male fitness than hermaphrodites, referred to as male advantage. Male advantage can emerge from increased fertility owing to resource reallocation. However, empirical studies usually compare sexual phenotypes over a single flowering season, thus ignoring potential cumulative effects over successive seasons in perennials. In this study, we quantify various components of male fertility advantage, both within and between seasons, in the long-lived perennial shrub Phillyrea angustifolia (Oleaceae). Although, owing to a peculiar diallelic self-incompatibility system and female sterility mutation strictly associated with a breakdown of incompatibility, males do not need fertility advantage to persist in this species, this advantage remains an important determinant of their equilibrium frequency. METHODS A survey of >1000 full-sib plants allowed us to compare males and hermaphrodites for several components of male fertility. Individuals were characterized for proxies of pollen production and vegetative growth. By analysing maternal progeny, we compared the siring success of males and hermaphrodites. Finally, using a multistate capture-recapture model we assessed, for each sexual morph, how the intensity of flowering in one year impacts next-year growth and reproduction. KEY RESULTS Males benefitted from a greater vegetative growth and flowering intensity. Within one season, males sired twice as many seeds as equidistant, compatible hermaphroditic competitors. In addition, males more often maintained intense flowering over successive years. Finally, investment in male reproductive function appeared to differ between the two incompatibility groups of hermaphrodites. CONCLUSION Males, by sparing the cost of female reproduction, have a higher flowering frequency and vegetative growth, both of which contribute to male advantage over an individual lifetime. This suggests that studies analysing sexual phenotypes during only single reproductive periods are likely to provide inadequate estimates of male advantage in perennials.
Collapse
Affiliation(s)
- F Laugier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - P Vernet
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
| | - J Lepart
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - P -O Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - M Dufay
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Saunders PA, Perez J, Ronce O, Veyrunes F. Multiple sex chromosome drivers in a mammal with three sex chromosomes. Curr Biol 2022; 32:2001-2010.e3. [PMID: 35381184 DOI: 10.1016/j.cub.2022.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
Eukaryotes with separate males and females display a great diversity in the way they determine sex, but it is still unclear what evolutionary forces cause transitions between sex-determining systems. Rather that the lack of hypotheses, the problem is the scarcity of adequate biological systems to test them. Here, we take advantage of the recent evolution of a feminizing X chromosome (called X∗) in the African pygmy mouse Mus minutoides to investigate one of the evolutionary forces hypothesized to cause such transitions, namely sex chromosome drive (i.e., biased transmission of sex chromosomes to the next generation). Through extensive molecular sexing of pups at weaning, we reveal the existence of a remarkable male sex chromosome drive system in this species, whereby direction and strength of drive are conditional upon the genotype of males' partners: males transmit their Y at a rate close to 80% when mating with XX or XX∗ females and only 36% when mating with X∗Y females. Using mathematical modeling, we explore the joint evolution of these unusual sex-determining and drive systems, revealing that different sequences of events could have led to the evolution of this bizarre system and that the "conditional" nature of sex chromosome drive plays a crucial role in the short- and long-term maintenance of the three sex chromosomes.
Collapse
Affiliation(s)
- Paul A Saunders
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France.
| | - Julie Perez
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| | - Ophélie Ronce
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| |
Collapse
|
5
|
Sakio H, Nirei T. Is the High Proportion of Males in a Population of the Self-Incompatible Fraxinus platypoda (Oleaceae) Indicative of True Androdioecy or Cryptic-Dioecy? PLANTS 2022; 11:plants11060753. [PMID: 35336635 PMCID: PMC8951091 DOI: 10.3390/plants11060753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022]
Abstract
Androdioecy is a rare reproductive system. Fraxinus platypoda, a woody canopy species in Japan’s mountainous riparian zones, is described as a morphologically androdioecious species. In this study, we tried to detect whether F. platypoda is also functionally androdioecious. We analyzed its sexual expression, seed development, pollen morphology and germination ability, pollination systems, and mast flowering behavior. We found that the hermaphrodite trees are andromonoecious, with inflorescences bearing male and hermaphroditic flowers, whereas male individuals had only male flowers. Pollen morphology was identical in male flowers, in hermaphrodite flowers of an andromonoecious individual, and in male flowers of male individuals. Pollen from both types of individuals was capable of germination both ex vivo (on nutrient medium) and in vivo in pollination experiments. However, compared with pollen from andromonoecious trees, pollen from male trees showed a higher germination rate. The self-pollination rate of bagged hermaphroditic flowers was almost zero. The fruit set rate following cross-pollination with male pollen from a male tree was higher than that following natural pollination, whereas the rate with hermaphroditic pollen was the same. The flowering and fruiting of F. platypoda have fluctuated over 17 years; the flowering of the two types of sexual individuals exhibited clear synchronization during this period. The frequency of male individuals within the populations is 50%. The maintenance of such a proportion of males in populations of the self-incompatible F. platypoda is either indicative of a true androdioecious species with a diallelic self-incompatibility system or a cryptic-dioecious species. This alternative is discussed here.
Collapse
Affiliation(s)
- Hitoshi Sakio
- Sado Island Center for Ecological Sustainability, Niigata University, Sado 952-2206, Japan
- Correspondence:
| | - Takashi Nirei
- Saitama Museum of Natural History, Nagatoro 369-1305, Japan;
| |
Collapse
|
6
|
Mariotti R, Pandolfi S, De Cauwer I, Saumitou‐Laprade P, Vernet P, Rossi M, Baglivo F, Baldoni L, Mousavi S. Diallelic self-incompatibility is the main determinant of fertilization patterns in olive orchards. Evol Appl 2021; 14:983-995. [PMID: 33897815 PMCID: PMC8061272 DOI: 10.1111/eva.13175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/28/2023] Open
Abstract
Self-incompatibility (SI) in flowering plants potentially represents a major obstacle for sexual reproduction, especially when the number of S-alleles is low. The situation is extreme in the commercially important olive tree, where in vitro pollination assays suggested the existence of a diallelic SI (DSI) system involving only two groups (G1 and G2). Varieties belonging to the same SI group cannot fertilize each other, such that successful fruit production is predicted to require pollination between varieties of different groups. To test this prediction, we explored the extent to which the DSI system determines fertilization patterns under field conditions. One hundred and seventeen olive cultivars were first genotyped using 10 highly polymorphic dinucleotide Simple Sequence Repeat (SSR) markers to ascertain varietal identity. Cultivars were then phenotyped through controlled pollination tests to assign each of them to one of the two SI groups. We then collected and genotyped 1440 open pollinated embryos from five different orchards constituted of seven local cultivars with known group of incompatibility groups. Embryos genotype information were used: (i) to assign embryos to the most likely pollen donor genotype in the neighbourhood using paternity analysis, and (ii) to compare the composition of the pollen cloud genetic among recipient trees in the five sites. The paternity analysis showed that the DSI system is the main determinant of fertilization success under field open pollination conditions: G1 cultivars sired seeds exclusively on G2 cultivars, and reciprocally. No self-fertilization events were observed. Our results demonstrate that DSI is a potent force determining pollination success among varieties within olive orchards used for production. They have the potential to improve management practices by guiding the selection of compatible varieties to avoid planting orchards containing sets of varieties with strongly unbalanced SI groups, as these would lead to suboptimal olive production.
Collapse
Affiliation(s)
| | | | | | | | | | - Martina Rossi
- Institute of Biosciences and BioresourcesCNRPerugiaItaly
| | | | | | - Soraya Mousavi
- Institute of Biosciences and BioresourcesCNRPerugiaItaly
| |
Collapse
|
7
|
Besnard G, Cheptou P, Debbaoui M, Lafont P, Hugueny B, Dupin J, Baali‐Cherif D. Paternity tests support a diallelic self-incompatibility system in a wild olive ( Olea europaea subsp. laperrinei, Oleaceae). Ecol Evol 2020; 10:1876-1888. [PMID: 32128122 PMCID: PMC7042767 DOI: 10.1002/ece3.5993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
Self-incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S-alleles from two distinct taxa, the possible artificial selection of self-compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross-genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self-fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.
Collapse
Affiliation(s)
| | - Pierre‐Olivier Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3MontpellierFrance
| | - Malik Debbaoui
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Pierre Lafont
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Bernard Hugueny
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Julia Dupin
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | | |
Collapse
|
8
|
Cossard GG, Pannell JR. A functional decomposition of sex inconstancy in the dioecious, colonizing plant Mercurialis annua. AMERICAN JOURNAL OF BOTANY 2019; 106:722-732. [PMID: 31081926 DOI: 10.1002/ajb2.1277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Plants with separate sexes often show "inconstant" or "leaky" sex expression, with females or males producing a few flowers of the opposite sex. The frequency and degree of such inconstancy may reflect residual hermaphroditic sex allocation after an evolutionary transition from combined to separate sexes. Sex inconstancy also represents a possible first step in the breakdown of dioecy back to hermaphroditism. In the Mercurialis annua (Euphorbiaceae) species complex, monoecy and androdioecy have evolved from dioecy in polyploid populations. Here, we characterize patterns of sex inconstancy in dioecious M. annua and discuss how sex inconstancy may have contributed to the breakdown of separate sexes in the genus. METHODS We measured sex inconstancy in three common gardens of M. annua over 2 years using a modification of Lloyd's phenotypic gender in terms of frequency and degree, with the degree calibrating inconstancy against the sex allocation of constant males and constant females, yielding a measure of gender that does not depend on the distribution of gender in the population. RESULTS Unusually for dioecious plants, the frequency of sex inconstancy in M. annua was greater in females, but its degree was greater for males in the 2 years of study. We suggest that this pattern is consistent with the maintenance of inconstancy in dioecious M. annua by selection for reproductive assurance under mate limitation. CONCLUSIONS Our study illustrates the utility of decomposing measures of sex inconstancy into its frequency and its degree and throws new light on the origin of variation in sexual systems in Mercurialis.
Collapse
Affiliation(s)
- Guillaume G Cossard
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Saumitou-Laprade P, Vernet P, Dowkiw A, Bertrand S, Billiard S, Albert B, Gouyon PH, Dufay M. Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae). Proc Biol Sci 2019; 285:rspb.2018.0004. [PMID: 29467269 DOI: 10.1098/rspb.2018.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
How flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash (Fraxinus excelsior), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype. The reproductive system in F. excelsior that was previously viewed as polygamy (co-occurrence of unisexuals and hermaphrodites with varying degrees of allocation to the male and female functions) and thus appears to actually behave as a subdioecious system. Hermaphrodites and females belong to one SI group and functionally reproduce as females, whereas males and male-biased hermaphrodites belong to the other SI group and are functionally males. Our results offer an alternative mechanism for the evolution of sexual specialization in flowering plants.
Collapse
Affiliation(s)
| | - Philippe Vernet
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France
| | - Arnaud Dowkiw
- INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | - Sylvain Bertrand
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | | | - Béatrice Albert
- Ecologie Systématique et Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Pierre-Henri Gouyon
- UMR MNHN CNRS 7205, Dept Systemat and Evolut, Museum Natl Hist Nat, 75005 Paris, France
| | - Mathilde Dufay
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,CEFE, Université Montpellier, CNRS, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Abstract
The canonical model for the evolution of separate sexes in plants invokes sterility mutations at two linked loci. A new study claims to have found them in asparagus, but the order of their origin does not conform to expectation.
Collapse
Affiliation(s)
- John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Jörn Gerchen
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Saumitou-Laprade P, Vernet P, Vekemans X, Castric V, Barcaccia G, Khadari B, Baldoni L. Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self-incompatibility system of Olea europaea L. Evol Appl 2017; 10:860-866. [PMID: 29151877 PMCID: PMC5680419 DOI: 10.1111/eva.12498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 11/29/2022] Open
Abstract
Bervillé et al. express concern about the existence of the diallelic self‐incompatibility (DSI) system in Olea europaea, mainly because our model does not account for results from previous studies from their group that claimed to have documented asymmetry of the incompatibility response in reciprocal crosses. In this answer to their comment, we present original results based on reciprocal stigma tests that contradict conclusions from these studies. We show that, in our hands, not a single case of asymmetry was confirmed, endorsing that symmetry of incompatibility reactions seems to be the rule in Olive. We discuss three important aspects that were not taken into account in the studies cited in their comments and that can explain the discrepancy: (i) the vast uncertainty around the actual genetic identity of vernacular varieties, (ii) the risk of massive contamination associated with the pollination protocols that they used and (iii) the importance of checking for stigma receptivity in controlled crosses. These studies were thus poorly genetically controlled, and we stand by our original conclusion that Olive tree exhibits DSI.
Collapse
Affiliation(s)
- Pierre Saumitou-Laprade
- CNRS UMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Philippe Vernet
- CNRS UMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Xavier Vekemans
- CNRS UMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Vincent Castric
- CNRS UMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Gianni Barcaccia
- Laboratory of Genomics and Plant Breeding DAFNAE - University of Padova Legnaro PD Italy
| | - Bouchaïb Khadari
- UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP) INRA/CBNMed Montpellier France.,UMR 1334 AGAP Montpellier SupAgro Montpellier France
| | | |
Collapse
|
12
|
Saumitou-Laprade P, Vernet P, Vekemans X, Billiard S, Gallina S, Essalouh L, Mhaïs A, Moukhli A, El Bakkali A, Barcaccia G, Alagna F, Mariotti R, Cultrera NGM, Pandolfi S, Rossi M, Khadari B, Baldoni L. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol Appl 2017; 10:867-880. [PMID: 29151878 PMCID: PMC5680433 DOI: 10.1111/eva.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self‐incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra‐ and interspecific stigma tests on 89 genotypes representative of species‐wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self‐incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross‐incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.
Collapse
Affiliation(s)
- Pierre Saumitou-Laprade
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Philippe Vernet
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Xavier Vekemans
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sylvain Billiard
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sophie Gallina
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | | | - Ali Mhaïs
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRAUR Amélioration des Plantes Marrakech Morocco.,Laboratoire AgroBiotech L02B005 Faculté des Sciences et Techniques Guéliz University Cadi Ayyad Marrakech Morocco
| | | | - Ahmed El Bakkali
- INRAUR Amélioration des Plantes et Conservation des Ressources Phytogénétiques Meknès Morocco
| | - Gianni Barcaccia
- Laboratory of Genomics and Plant Breeding DAFNAE - University of Padova Legnaro PD Italy
| | - Fiammetta Alagna
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment CREATuriBA Italy.,CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | | | | | | | - Martina Rossi
- CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | - Bouchaïb Khadari
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRA/CBNMed UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP) Montpellier France
| | | |
Collapse
|
13
|
Pucholt P, Hallingbäck HR, Berlin S. Allelic incompatibility can explain female biased sex ratios in dioecious plants. BMC Genomics 2017; 18:251. [PMID: 28335728 PMCID: PMC5364565 DOI: 10.1186/s12864-017-3634-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Background Biased sex ratios are common among dioecious plant species despite the theoretical prediction of selective advantage of even sex ratios. Albeit the high prevalence of deviations from even sex ratios, the genetic causes to sex biases are rarely known outside of a few model species. Here we present a mechanism underlying the female biased sex ratio in the dioecious willow species Salix viminalis. Results We compared the segregation pattern of genome-wide single nucleotide polymorphism markers in two contrasting bi-parental pedigree populations, the S3 with even sex ratio and the S5 with a female biased sex ratio. With the segregation analysis and comparison between the two populations, we were able to demonstrate that sex determination and sex ratio distortion are controlled by different genetic mechanisms. We furthermore located the sex ratio distorter locus to a Z/W-gametologous region on chromosome 15, which was in close linkage with the sex determination locus. Interestingly, all males in the population with biased sex ratio have in this sex ratio distorter locus the same genotype, meaning that males with the Z1/Z3-genotype were missing from the population, thereby creating the 2:1 female biased sex ratio. Conclusions We attribute the absence of Z1/Z3 males to an allelic incompatibility between maternally and paternally inherited alleles in this sex ratio distorter locus. Due to the tight linkage with the sex determination locus only male individuals are purged from the population at an early age, presumably before or during seed development. We showed that such allelic incompatibility could be stably maintained over evolutionary times through a system of overdominant or pseudooverdominant alleles. Thus, it is possible that the same mechanism generates the female biased sex ratio in natural willow populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3634-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pascal Pucholt
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden.
| | - Henrik R Hallingbäck
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden.,Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE - 90183, Umeå, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden
| |
Collapse
|
14
|
Käfer J, Marais GAB, Pannell JR. On the rarity of dioecy in flowering plants. Mol Ecol 2017; 26:1225-1241. [PMID: 28101895 DOI: 10.1111/mec.14020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/21/2023]
Abstract
Dioecy, the coexistence of separate male and female individuals in a population, is a rare but phylogenetically widespread sexual system in flowering plants. While research has concentrated on why and how dioecy evolves from hermaphroditism, the question of why dioecy is rare, despite repeated transitions to it, has received much less attention. Previous phylogenetic and theoretical studies have suggested that dioecy might be an evolutionary dead end. However, recent research indicates that the phylogenetic support for this hypothesis is attributable to a methodological bias and that there is no evidence for reduced diversification in dioecious angiosperms. The relative rarity of dioecy thus remains a puzzle. Here, we review evidence for the hypothesis that dioecy might be rare not because it is an evolutionary dead end, but rather because it easily reverts to hermaphroditism. We review what is known about transitions between hermaphroditism and dioecy, and conclude that there is an important need to consider more widely the possibility of transitions away from dioecy, both from an empirical and a theoretical point of view, and by combining tools from molecular evolution and insights from ecology.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Bât. Grégor Mendel 43, bd du 11 novembre 1918, 69622, Villeurbanne cedex, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Bât. Grégor Mendel 43, bd du 11 novembre 1918, 69622, Villeurbanne cedex, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, Dommée B, Saumitou-Laprade P. Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. THE NEW PHYTOLOGIST 2016; 210:1408-17. [PMID: 26833140 DOI: 10.1111/nph.13872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 05/21/2023]
Abstract
A rare homomorphic diallelic self-incompatibility (DSI) system discovered in Phillyrea angustifolia (family Oleaceae, subtribe Oleinae) can promote the transition from hermaphroditism to androdioecy. If widespread and stable in Oleaceae, DSI may explain the exceptionally high rate of androdioecious species reported in this plant family. Here, we set out to determine whether DSI occurs in another Oleaceae lineage. We tested for DSI in subtribe Fraxininae, a lineage that diverged from subtribe Oleinae c. 40 million yr ago. We explored the compatibility relationships in Fraxinus ornus using 81 hermaphrodites and 25 males from one natural stand and two naturalized populations using intra- and interspecific stigma tests performed on F. ornus and P. angustifolia testers. We uncovered a DSI system with hermaphrodites belonging to one of two self-incompatibility (SI) groups and males compatible with both groups, making for a truly androdioecious reproductive system. The two human-founded populations contained only one of the two SI groups. Our results provide evidence for the evolutionary persistence of DSI. We discuss how its stability over time may have affected transitions to other sexual systems, such as dioecy.
Collapse
Affiliation(s)
- Philippe Vernet
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Pierre Lepercq
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Sylvain Billiard
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Angélique Bourceaux
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Jacques Lepart
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Bertrand Dommée
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Pierre Saumitou-Laprade
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| |
Collapse
|
16
|
Milani L, Ghiselli F, Passamonti M. Mitochondrial selfish elements and the evolution of biological novelties. Curr Zool 2016; 62:687-697. [PMID: 29491956 PMCID: PMC5804245 DOI: 10.1093/cz/zow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nuclei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sexual differentiation. We propose a testable model that describes how the acquisition of selfish features by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bivalves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transition state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
17
|
Abstract
Violation of Mendel's Law of Segregation by selfish X chromosomes that favour their own transmission is known for a number of organisms. Now, a new study reveals sex-ratio distortion favouring males and explains previously puzzling sex ratios in a Mediterranean shrub.
Collapse
|