1
|
Scarinci G, Ariens JL, Angelidou G, Schmidt S, Glatter T, Paczia N, Sourjik V. Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community. Nat Commun 2024; 15:7238. [PMID: 39174531 PMCID: PMC11341674 DOI: 10.1038/s41467-024-51702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
While different stages of mutualism can be observed in natural communities, the dynamics and mechanisms underlying the gradual erosion of independence of the initially autonomous organisms are not yet fully understood. In this study, by conducting the laboratory evolution on an engineered microbial community, we reproduce and molecularly track the stepwise progression towards enhanced partner entanglement. We observe that the evolution of the community both strengthens the existing metabolic interactions and leads to the emergence of de novo interdependence between partners for nitrogen metabolism, which is a common feature of natural symbiotic interactions. Selection for enhanced metabolic entanglement during the community evolution repeatedly occurred indirectly, via pleiotropies and trade-offs within cellular regulatory networks, and with no evidence of group selection. The indirect positive selection of metabolic dependencies between microbial community members, which results from the direct selection of other coupled traits in the same regulatory network, may therefore be a common but underappreciated driving force guiding the evolution of natural mutualistic communities.
Collapse
Affiliation(s)
- Giovanni Scarinci
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jan-Luca Ariens
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Sebastian Schmidt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
2
|
Cameron-Pack ME, König SG, Reyes-Guevara A, Reyes-Prieto A, Nedelcu AM. A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biol Lett 2022; 18:20220059. [PMID: 35728616 PMCID: PMC9213111 DOI: 10.1098/rsbl.2022.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.
Collapse
Affiliation(s)
- Marybelle E. Cameron-Pack
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Stephan G. König
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Anajose Reyes-Guevara
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
3
|
Bentley MA, Yates CA, Hein J, Preston GM, Foster KR. Pleiotropic constraints promote the evolution of cooperation in cellular groups. PLoS Biol 2022; 20:e3001626. [PMID: 35658016 PMCID: PMC9166655 DOI: 10.1371/journal.pbio.3001626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures-which link the expression of cooperative and private traits-can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms-a germ line and delayed reproductive maturity-and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.
Collapse
Affiliation(s)
- Michael A. Bentley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christian A. Yates
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Kevin R. Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
The evolution of multicellularity and cancer: views and paradigms. Biochem Soc Trans 2021; 48:1505-1518. [PMID: 32677677 DOI: 10.1042/bst20190992] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Conceptually and mechanistically, the evolution of multicellularity required the integration of single cells into new functionally, reproductively and evolutionary stable multicellular individuals. As part of this process, a change in levels of selection occurred, with selection at the multicellular level overriding selection at the cell level. The stability of multicellular individuals is dependent on a combination of mechanisms that supress within-group evolution, by both reducing the occurrence of somatic mutations as well as supressing somatic selection. Nevertheless, mutations that, in a particular microenvironment, confer mutant lineages a fitness advantage relative to normal somatic cells do occur, and can result in cancer. This minireview highlights several views and paradigms that relate the evolution of multicellularity to cancer. As a phenomenon, cancer is generally understood as a failure of multicellular systems to suppress somatic evolution. However, as a disease, cancer is interpreted in different frameworks: (i) a breakdown of cooperative behaviors underlying the evolution of multicellularity, (ii) a disruption of molecular networks established during the emergence of multicellularity to impose constraints on single-celled units, or (iii) an atavistic state resulting from reactivating primitive programs that originated in the earliest unicellular species. A number of assumptions are common in all the views relating cancer as a disease to the evolution of multicellularity. For instance, cancer is considered a reversal to unicellularity, and cancer cells are thought to both resemble unicellular organisms and benefit from ancestral-like traits. Nevertheless, potential limitations of current paradigms should be acknowledged as different perspectives can provide novel insights with potential therapeutic implications.
Collapse
|
5
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
6
|
Hart SFM, Chen CC, Shou W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 2021; 10:57838. [PMID: 33501915 PMCID: PMC8184212 DOI: 10.7554/elife.57838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cooperation, paying a cost to benefit others, is widespread. Cooperation can be promoted by pleiotropic ‘win-win’ mutations which directly benefit self (self-serving) and partner (partner-serving). Previously, we showed that partner-serving should be defined as increased benefit supply rate per intake benefit. Here, we report that win-win mutations can rapidly evolve even under conditions unfavorable for cooperation. Specifically, in a well-mixed environment we evolved engineered yeast cooperative communities where two strains exchanged costly metabolites, lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, ecm21 mutations repeatedly arose. ecm21 is self-serving, improving self’s growth rate in limiting lysine. ecm21 is also partner-serving, increasing hypoxanthine release rate per lysine consumption and the steady state growth rate of partner and of community. ecm21 also arose in monocultures evolving in lysine-limited chemostats. Thus, even without any history of cooperation or pressure to maintain cooperation, pleiotropic win-win mutations may readily evolve to promote cooperation.
Collapse
Affiliation(s)
| | - Chi-Chun Chen
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States
| | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States.,University College London, Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution (CLOE), London, United Kingdom
| |
Collapse
|
7
|
Abstract
Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| |
Collapse
|
8
|
Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response. mBio 2020; 11:mBio.03090-19. [PMID: 32184248 PMCID: PMC7078477 DOI: 10.1128/mbio.03090-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacterial stress responses are generally considered protective measures taken by individual cells. Enabled by an experimental evolution approach, we describe a contrasting property, collective nutrient acquisition, in the RpoS-dependent stress response of the opportunistic human pathogen P. aeruginosa. Specifically, we identify the secreted P. aeruginosa aminopeptidase (PaAP) as an essential RpoS-controlled function in extracellular proteolysis. As a secreted “public good,” PaAP permits cheating by rpoS mutants that save the metabolic costs of expressing RpoS-controlled genes dispensable under the given growth conditions. Proteolytic enzymes are important virulence factors in P. aeruginosa pathogenesis and constitute a potential target for antimicrobial therapy. More broadly, our work contributes to recent findings in higher organisms that stress affects not only individual fitness and competitiveness but also cooperative behavior. The global stress response controlled by the alternative sigma factor RpoS protects enteric bacteria from a variety of environmental stressors. The role of RpoS in other, nonenteric bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, is less well understood. Here, we employed experimental social evolution to reveal that cooperative behavior via secreted public goods is an important function in the RpoS response of P. aeruginosa. Using whole-genome sequencing, we identified rpoS loss-of-function mutants among isolates evolved in a protein growth medium that requires extracellular proteolysis. We found that rpoS mutants comprise up to 25% of the evolved population and that they behave as social cheaters, with low fitness in isolation but high fitness in mixed culture with the cooperating wild type. We conclude that rpoS mutants cheat because they exploit an RpoS-controlled public good produced by the wild type, the secreted aminopeptidase PaAP, and because they do not carry the metabolic costs of expressing PaAP and many other gene products in the large RpoS regulon. Our results suggest that PaAP is an integral part of a proteolytic sequence in P. aeruginosa that permits the utilization of protein as a nutrient source. Our work broadens the scope of stress response functions in bacteria.
Collapse
|
9
|
Smith P, Cozart J, Lynn BK, Alberts E, Frangipani E, Schuster M. Bacterial Cheaters Evade Punishment by Cyanide. iScience 2019; 19:101-109. [PMID: 31357168 PMCID: PMC6664145 DOI: 10.1016/j.isci.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
In all domains of life, mechanisms exist that protect cooperating groups from exploitation by cheaters. Recent observations with the bacterium Pseudomonas aeruginosa have suggested a paradigmatic cheater control mechanism in which cooperator cells punish or "police" cheater cells by cyanide poisoning. These cheater cells are deficient in a pleiotropic quorum-sensing regulator that controls the production of cooperative secretions including cyanide, and presumably also cyanide resistance. In this study, we directly tested and refuted the cyanide policing model. Contrary to the hypothesis, cheater fitness was unaffected by the presence of cyanide. Cheater mutants grew equally well in co-cultures with either cyanide-proficient or cyanide-deficient cooperators, and they were as resistant to exogenous cyanide as wild-type cells. We show that these behaviors are the result of quorum-sensing-independent and cyanide-responsive resistance gene regulation. Our results highlight the role of genetic architecture in the evolution of cooperative behavior.
Collapse
Affiliation(s)
- Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jamison Cozart
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Bryan K Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin Alberts
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino (PU), Italy
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
10
|
Abstract
Growing evidence indicates that the mammalian microbiome can affect behaviour, and several symbionts even produce neurotransmitters. One common explanation for these observations is that symbionts have evolved to manipulate host behaviour for their benefit. Here, we evaluate the manipulation hypothesis by applying evolutionary theory to recent work on the gut-brain axis. Although the theory predicts manipulation by symbionts under certain conditions, these appear rarely satisfied by the genetically diverse communities of the mammalian microbiome. Specifically, any symbiont investing its resources to manipulate host behaviour is expected to be outcompeted within the microbiome by strains that do not manipulate and redirect their resources into growth and survival. Moreover, current data provide no clear evidence for manipulation. Instead, we show how behavioural effects can readily arise as a by-product of natural selection on microorganisms to grow within the host and natural selection on hosts to depend upon their symbionts. We argue that understanding why the microbiome influences behaviour requires a focus on microbial ecology and local effects within the host.
Collapse
Affiliation(s)
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol 2019; 32:412-424. [PMID: 30724418 PMCID: PMC6520251 DOI: 10.1111/jeb.13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.
Collapse
Affiliation(s)
- Tobias Wechsler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Chisholm RH, Connelly BD, Kerr B, Tanaka MM. The Role of Pleiotropy in the Evolutionary Maintenance of Positive Niche Construction. Am Nat 2018; 192:35-48. [DOI: 10.1086/697471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Shibasaki S, Shimada M. Cyclic dominance emerges from the evolution of two inter-linked cooperative behaviours in the social amoeba. Proc Biol Sci 2018; 285:rspb.2018.0905. [PMID: 29925622 DOI: 10.1098/rspb.2018.0905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Evolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoeba Dictyostelium discoideum performs two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained because of the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic adenosine 3',5'-monophosphate (cAMP) is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained because of the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 1538902, Japan
| | - Masakazu Shimada
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 1538902, Japan
| |
Collapse
|
15
|
Oshri RD, Zrihen KS, Shner I, Omer Bendori S, Eldar A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. ISME JOURNAL 2018; 12:2458-2469. [PMID: 29925881 PMCID: PMC6154968 DOI: 10.1038/s41396-018-0205-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs a hierarchical quorum-sensing network to regulate virulence factor production that cooperatively benefit the population at a cost to the individual. It has been argued that the evolution of a cooperative mutant in a quorum sensing-suppressed population would be hampered through its exploitation by neighboring non-mutant cells. It remains unclear whether mechanisms which overcome this exploitation exist. Here we investigate the regain of quorum-sensing cooperation by evolving a mutant of the lasR master quorum-sensing regulator. The mutant regained partial cooperative growth through null mutations in mexT, which codes for an activator of the MexEF-OprN multidrug-resistant pump. We find that these mutations enhance cooperative growth in both the lasR mutant and wild-type backgrounds through the activation of the RhlIR system. We show that the regain of cooperation in mexT mutants is mediated by the reduction in MexEF-OprN activity, whereas an additional source of private benefit is mostly mexEF-oprN-independent. Finally, we show that addition of antibiotics for which resistance is mediated by MexEF-OprN prevents the selection of increased cooperation at sub-MIC concentrations. MexT, therefore, not only links private and public goods, but also exposes conflicts between selection for antibiotic resistance and enhanced cooperation.
Collapse
Affiliation(s)
- Ron D Oshri
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren S Zrihen
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzhak Shner
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shira Omer Bendori
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avigdor Eldar
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
16
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
17
|
Yan H, Wang M, Sun F, Dandekar AA, Shen D, Li N. A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa. Front Microbiol 2018. [PMID: 29535700 PMCID: PMC5835063 DOI: 10.3389/fmicb.2018.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI-LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI-LasR system also induces a second QS circuit, the RhlI-RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI-RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa.
Collapse
Affiliation(s)
- Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Feng Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
18
|
Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc Natl Acad Sci U S A 2017; 114:E7796-E7802. [PMID: 28847943 DOI: 10.1073/pnas.1708580114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.
Collapse
|
19
|
Szilágyi A, Boza G, Scheuring I. Analysis of stability to cheaters in models of antibiotic degrading microbial communities. J Theor Biol 2017; 423:53-62. [DOI: 10.1016/j.jtbi.2017.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
20
|
Connelly BD, Bruger EL, McKinley PK, Waters CM. Resource abundance and the critical transition to cooperation. J Evol Biol 2017; 30:750-761. [PMID: 28036143 DOI: 10.1111/jeb.13039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Cooperation is abundant in nature, occurring at all levels of biological complexity. Yet cooperation is continually threatened by subversion from noncooperating cheaters. Previous studies have shown that cooperation can nevertheless be maintained when the benefits that cooperation provides to relatives outweigh the associated costs. These fitness costs and benefits are not fixed properties, but can be affected by the environment in which populations reside. Here, we describe how one environmental factor, resource abundance, decisively affects the evolution of cooperative public goods production in two independent evolving systems. In the Avida digital evolution platform, populations evolved in environments with different levels of a required resource, whereas populations of Vibrio cholerae evolved in the presence of different nutrient concentrations. In both systems, cooperators and cheaters co-existed stably in resource-rich environments, whereas cheaters dominated in resource-poor environments. These two outcomes were separated by a sharp transition that occurred at a critical level of resource. These results offer new insights into how the environment affects the evolution of cooperation and highlight the challenges that populations of cooperators face when they experience environmental change.
Collapse
Affiliation(s)
- B D Connelly
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - E L Bruger
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - P K McKinley
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - C M Waters
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Bacterial Quorum Sensing Stabilizes Cooperation by Optimizing Growth Strategies. Appl Environ Microbiol 2016; 82:6498-6506. [PMID: 27565619 DOI: 10.1128/aem.01945-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
Communication has been suggested as a mechanism to stabilize cooperation. In bacteria, chemical communication, termed quorum sensing (QS), has been hypothesized to fill this role, and extracellular public goods are often induced by QS at high cell densities. Here we show, with the bacterium Vibrio harveyi, that QS provides strong resistance against invasion of a QS defector strain by maximizing the cellular growth rate at low cell densities while achieving maximum productivity through protease upregulation at high cell densities. In contrast, QS mutants that act as defectors or unconditional cooperators maximize either the growth rate or the growth yield, respectively, and thus are less fit than the wild-type QS strain. Our findings provide experimental evidence that regulation mediated by microbial communication can optimize growth strategies and stabilize cooperative phenotypes by preventing defector invasion, even under well-mixed conditions. This effect is due to a combination of responsiveness to environmental conditions provided by QS, lowering of competitive costs when QS is not induced, and pleiotropic constraints imposed on defectors that do not perform QS. IMPORTANCE Cooperation is a fundamental problem for evolutionary biology to explain. Conditional participation through phenotypic plasticity driven by communication is a potential solution to this dilemma. Thus, among bacteria, QS has been proposed to be a proximate stabilizing mechanism for cooperative behaviors. Here, we empirically demonstrate that QS in V. harveyi prevents cheating and subsequent invasion by nonproducing defectors by maximizing the growth rate at low cell densities and the growth yield at high cell densities, whereas an unconditional cooperator is rapidly driven to extinction by defectors. Our findings provide experimental evidence that QS regulation prevents the invasion of cooperative populations by QS defectors even under unstructured conditions, and they strongly support the role of communication in bacteria as a mechanism that stabilizes cooperative traits.
Collapse
|
22
|
Asfahl KL, Schuster M. Social interactions in bacterial cell-cell signaling. FEMS Microbiol Rev 2016; 41:92-107. [PMID: 27677972 DOI: 10.1093/femsre/fuw038] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 08/14/2016] [Indexed: 01/16/2023] Open
Abstract
Cooperation and conflict in microorganisms is being recognized as an important factor in the organization and function of microbial communities. Many of the cooperative behaviors described in bacteria are governed through a cell-cell signaling process generally termed quorum sensing. Communication and cooperation in diverse microorganisms exhibit predictable trends that behave according to social evolutionary theory, notably that public goods dilemmas produce selective pressures for divergence in social phenotypes including cheating. In this review, we relate the general features of quorum sensing and social adaptation in microorganisms to established evolutionary theory. We then describe physiological and molecular mechanisms that have been shown to stabilize cooperation in microbes, thereby preventing a tragedy of the commons. Continued study of the role of communication and cooperation in microbial ecology and evolution is important to clinical treatment of pathogens, as well as to our fundamental understanding of cooperative selection at all levels of life.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|