1
|
Vinogradov IM, Fox RJ, Fichtel C, Kappeler PM, Jennions MD. Paternity analysis reveals sexual selection on cognitive performance in mosquitofish. Nat Ecol Evol 2025; 9:692-704. [PMID: 40000808 DOI: 10.1038/s41559-025-02645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
In many animal species, cognitive abilities are under strong natural selection because decisions about foraging, habitat choice and predator avoidance affect fecundity and survival. But how has sexual selection, which is usually stronger on males than females, shaped the evolution of cognitive abilities that influence success when competing for mates or fertilizations? We aimed to investigate potential links between individual differences in male cognitive performance to variation in paternity arising solely from sexual selection. We therefore ran four standard cognitive assays to quantify five measures of cognitive performance by male mosquitofish (Gambusia holbrooki). Males were then assigned to 11 outdoor ponds where they could compete for females. Females mate many times, which leads to intense sperm competition and broods with mixed paternity. We genotyped 2,430 offspring to identify their fathers. Males with greater inhibitory control and better spatial learning abilities sired significantly more offspring, while males with better initial impulse control sired significantly fewer offspring. Associative and reversal learning did not predict a male's share of paternity. In sum, there was sexual selection on several, but not all, aspects of male cognitive performance.
Collapse
Affiliation(s)
- Ivan M Vinogradov
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Rebecca J Fox
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Reyes AS, Bittar A, Ávila LC, Botia C, Esmeral NP, Bloch NI. Divergence in brain size and brain region volumes across wild guppy populations. Proc Biol Sci 2022; 289:20212784. [PMID: 36000235 PMCID: PMC9399710 DOI: 10.1098/rspb.2021.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex evolutionary dynamics have produced extensive variation in brain anatomy in the animal world. In guppies, Poecilia reticulata, brain size and anatomy have been extensively studied in the laboratory contributing to our understanding of brain evolution and the cognitive advantages that arise with brain anatomical variation. However, it is unclear whether these laboratory results can be translated to natural populations. Here, we study brain neuroanatomy and its relationship with sexual traits across 18 wild guppy populations in diverse environments. We found extensive variation in female and male relative brain size and brain region volumes across populations in different environment types and with varying degrees of predation risk. In contrast with laboratory studies, we found differences in allometric scaling of brain regions, leading to variation in brain region proportions across populations. Finally, we found an association between sexual traits, mainly the area of black patches and tail length, and brain size. Our results suggest differences in ecological conditions and sexual traits are associated with differences in brain size and brain regions volumes in the wild, as well as sexual dimorphisms in the brain's neuroanatomy.
Collapse
Affiliation(s)
- Angie S. Reyes
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Amaury Bittar
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Laura C. Ávila
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Catalina Botia
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natasha I. Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| |
Collapse
|
3
|
Strain differences rather than species differences contribute to variation in associative learning ability in Nasonia. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Zwoinska MK, Larva T, Sekajova Z, Carlsson H, Meurling S, Maklakov AA. Artificial selection for increased dispersal results in lower fitness. J Evol Biol 2019; 33:217-224. [PMID: 31677316 DOI: 10.1111/jeb.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.
Collapse
Affiliation(s)
- Martyna K Zwoinska
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Tuuli Larva
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Zuzana Sekajova
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Hanne Carlsson
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Sara Meurling
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Alexei A Maklakov
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
5
|
|
6
|
Baur J, Nsanzimana JD, Berger D. Sexual selection and the evolution of male and female cognition: A test using experimental evolution in seed beetles. Evolution 2019; 73:2390-2400. [PMID: 31273775 DOI: 10.1111/evo.13793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
The mating system is thought to be important in shaping animal intelligence and sexual selection has been depicted as a driver of cognitive evolution, either directly by promoting superior cognitive ability during mate competition, or indirectly via genic capture of sexually selected traits. However, it remains unclear if intensified sexual selection leads to general improvements in cognitive abilities. Here, we evaluated this hypothesis by applying experimental evolution in seed beetles. Replicate lines, maintained for 35 generations of either enforced monogamy (eliminating sexual selection) or polygamy, were challenged to locate and discriminate among mates (male assays) or host seeds (female assays) in a spatial chemosensory learning task. All lines displayed learning between trials. Moreover, polygamous males outperformed monogamous males, providing evidence that sexual selection can lead to the evolution of improved male cognition. However, there were no differences between regimes in rates of male learning, and polygamous females showed no improvement in host search and even signs of reduced learning. Hence, sexual selection increased performance in cognitively demanding mate search, but it did not lead to general increases in cognitive abilities. We discuss the possibility that sexually antagonistic selection is an important factor maintaining abundant genetic variation in cognitive traits.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| | - Jean d'Amour Nsanzimana
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Madden JR, Langley EJG, Whiteside MA, Beardsworth CE, van Horik JO. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0297. [PMID: 30104439 PMCID: PMC6107567 DOI: 10.1098/rstb.2017.0297] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant (Phasianus colchicus) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
8
|
Boogert NJ, Madden JR, Morand-Ferron J, Thornton A. Measuring and understanding individual differences in cognition. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0280. [PMID: 30104425 DOI: 10.1098/rstb.2017.0280] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| | - Joah R Madden
- Department of Psychology, Washington Singer Labs, University of Exeter, Exeter EX4 4QG, UK
| | - Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada, K1N 6N5
| | - Alex Thornton
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
9
|
|
10
|
Sunde J, Tibblin P, Larsson P, Forsman A. Sex-specific effects of outbreeding on offspring quality in pike ( Esox lucius). Ecol Evol 2018; 8:10448-10459. [PMID: 30464817 PMCID: PMC6238122 DOI: 10.1002/ece3.4510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intraspecific genetic admixture occurs when previously separated populations within a species start interbreeding, and it can have either positive, negative, or neutral effects on reproductive performance. As there currently is no reliable predictor for the outcome of admixture, an increased knowledge about admixture effects in different species and populations is important to increase the understanding about what determines the response to admixture. We tested for effects of admixture on F1 offspring quality in three subpopulations of pike (Esox lucius). Gametes were collected in the field, and eggs from each female were experimentally fertilized with milt from a male from each population (one "pure" and two "admixed" treatments). Three offspring quality measures (hatching success, fry survival, and fry length) were determined and compared between (a) pure and admixed population combinations and (b) the sex-specific treatments within each admixed population combination (based on the origin of the male and female, respectively). The results suggested that although there were no overall effects of admixture on offspring quality, the consequences for a given population combination could be sex-specific and thus differ depending on which of the parents originated from one or the other population. All offspring quality traits were influenced by both maternal ID and paternal ID. Sex- and individual-specific effects can have implications for dispersal behavior and gene flow between natural populations, and are important to consider in conservation efforts.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Petter Tibblin
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Per Larsson
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Anders Forsman
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| |
Collapse
|
11
|
Forsman A. On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170429. [PMID: 30150227 PMCID: PMC6125723 DOI: 10.1098/rstb.2017.0429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
12
|
|
13
|
Liefting M, Hoedjes KM, Le Lann C, Smid HM, Ellers J. Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution 2018; 72:1449-1459. [PMID: 29768649 PMCID: PMC6099215 DOI: 10.1111/evo.13498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/15/2018] [Indexed: 01/19/2023]
Abstract
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question, we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by color-conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines.
Collapse
Affiliation(s)
- Maartje Liefting
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
- Applied Zoology/Animal EcologyFreie Universität BerlinBerlinD‐12163Germany
| | - Katja M. Hoedjes
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | - Cécile Le Lann
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution)UMR 6553, Université de RennesRennesF‐35000France
| | - Hans M. Smid
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Jacintha Ellers
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
| |
Collapse
|
14
|
Morand-Ferron J. Why learn? The adaptive value of associative learning in wild populations. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Anderson CL, Kasumovic MM. Development rate rather than social environment influences cognitive performance in Australian black field crickets, Teleogryllus commodus. PeerJ 2017; 5:e3563. [PMID: 28717598 PMCID: PMC5511702 DOI: 10.7717/peerj.3563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive functioning is vital for enabling animals of all taxa to optimise their chances of survival and reproductive success. Learning and memory in particular are drivers of many evolutionary processes. In this study, we examine how developmental plasticity can affect cognitive ability by exploring the role the early social environment has on problem solving ability and learning of female black field crickets, Teleogryllus commodus. We used two learning paradigms, an analog of the Morris water maze and a novel linear maze, to examine cognitive differences between individuals reared in two acoustic treatments: silence or calling. Although there was no evidence of learning or memory, individuals that took longer to mature solved the Morris water maze more quickly. Our results suggest that increased investment into cognitive development is likely associated with increased development time during immature stages. Inconsistent individual performance and motivation during the novel linear maze task highlights the difficulties of designing ecologically relevant learning tasks within a lab setting. The role of experimental design in understanding cognitive ability and learning in more natural circumstances is discussed.
Collapse
Affiliation(s)
- Caitlin L Anderson
- Ecology & Evolution Research Centre, UNSW Australia, Sydney, NSW, Australia
| | | |
Collapse
|
16
|
Ancell H, Pires-daSilva A. Sex-specific lifespan and its evolution in nematodes. Semin Cell Dev Biol 2017; 70:122-129. [PMID: 28554570 DOI: 10.1016/j.semcdb.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding.
Collapse
Affiliation(s)
- Henry Ancell
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
17
|
Zwoinska MK, Maklakov AA, Kawecki TJ, Hollis B. Experimental evolution of slowed cognitive aging in Drosophila melanogaster. Evolution 2016; 71:662-670. [PMID: 28000915 DOI: 10.1111/evo.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022]
Abstract
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories.
Collapse
Affiliation(s)
- Martyna K Zwoinska
- Department of Animal Ecology, Uppsala University, 752 36, Uppsala, Sweden.,Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| | - Alexei A Maklakov
- Department of Animal Ecology, Uppsala University, 752 36, Uppsala, Sweden
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| | - Brian Hollis
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|