1
|
Brud E. Season-specific dominance broadly stabilizes polymorphism under symmetric and asymmetric multivoltinism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567918. [PMID: 38045349 PMCID: PMC10690222 DOI: 10.1101/2023.11.20.567918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Seasonality causes intraannual fitness changes in multivoltine populations (defined as having multiple generations per year). While it is well-known that seasonally balanced polymorphism is established by overdominance in geometric mean fitness, an unsettled aspect of the deterministic theory is the relative contribution of various season-specific dominance mechanisms to the potential for polymorphism. In particular, the relative importance of seasonally-reversing and non-reversing schemes remains unclear. Here I analyze the parameter space for the discrete generation two-season multivoltine model and conclude that, in general, a substantial fraction of stabilizing schemes are non-reversing with the season (~25-50%). In addition, I derive the approximate equilibrium allele frequency cycle under bivoltinism, and find that the amplitude of allelic oscillation is maximized by non-reversing dominance if the selection coefficients are roughly symmetric. Lastly, I derive conditions for the intralocus evolution of dominance. These predict a long-term trend toward maximally beneficial reversal. Overall, the results counter the disproportionate emphasis placed on dominance reversal as a stabilizing mechanism and clarify that non-reversing dominance is expected to frequently characterize seasonally fluctuating alleles under both weak and strong selection, especially in their early history. I conclude that seasonally alternating selection regimes are easily able to maintain allelic variation without restrictive assumptions on either selection coefficients or dominance parameters.
Collapse
Affiliation(s)
- Evgeny Brud
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Yamamichi M, Letten AD, Schreiber SJ. Eco-evolutionary maintenance of diversity in fluctuating environments. Ecol Lett 2023; 26 Suppl 1:S152-S167. [PMID: 37840028 DOI: 10.1111/ele.14286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023]
Abstract
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Andrew D Letten
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Johnson EC, Hastings A. Towards a heuristic understanding of the storage effect. Ecol Lett 2022; 25:2347-2358. [PMID: 36181717 DOI: 10.1111/ele.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
The storage effect is a general explanation for coexistence in a variable environment. Unfortunately, the storage effect is poorly understood, in part because the generality of the storage effect precludes an interpretation that is simultaneously simple, intuitive and correct. Here, we explicate the storage effect by dividing one of its key conditions-covariance between environment and competition-into two pieces, namely that there must be a strong causal relationship between environment and competition, and that the effects of the environment do not change too quickly. This finer-grained definition can explain a number of previous results, including (1) that the storage effect promotes annual plant coexistence when the germination rate fluctuates, but not when the seed yield fluctuates, (2) that the storage effect is more likely to be induced by resource competition than the apparent competition, and (3) why the storage effect arises readily in models with either stage structure or environmental autocorrelation. Additionally, our expanded definition suggests two novel mechanisms by which the temporal storage effect can arise-transgenerational plasticity and causal chains of environmental variables-thus suggesting that the storage effect is a more common phenomenon than previously thought.
Collapse
Affiliation(s)
- Evan C Johnson
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA.,Center for Population Biology, University of California Davis, Davis, California, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Frisman EY, Zhdanova OL, Kulakov MP, Neverova GP, Revutskaya OL. Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhdanova OL, Frisman EY. Mathematical Modeling of Selection by Sex-Limited Trait: To the Question of Maintenance of Litter Size Polymorphism in Natural Populations of Arctic Foxes. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhdanova OL, Frisman EY. Genetic polymorphism under cyclical selection in long-lived species: The complex effect of age structure and maternal selection. J Theor Biol 2021; 512:110564. [PMID: 33359207 DOI: 10.1016/j.jtbi.2020.110564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Maternal selection and overlapping generations can facilitate the stable coexistence of alleles under temporally fluctuating environment. Using mathematical models, we considered the complex effect of both factors on the maintenance of genetic polymorphism in cyclically changing environments. We concentrated on asymmetric cyclic selection, which allows describing fluctuations of environments by analogy of food resources cycles with rare peaks and prolonged decline of prey abundance. The complex effect of maternal selection and overlapping generations turned out to work as follows: although overlapping generations always tend to dilate the polymorphism region, odd and even external cycles produce different types of polymorphism regions. Maternal selection under external odd cycles extends the coexistence region comparing with classic selection. Even cycles produce a part of parameter region, where the picture changes radically, and classic selection becomes more effective in maintaining polymorphism. Our models have clear biological interpretation, because we tried to model a situation demonstrated by natural populations of arctic foxes. The litter size being a major life history trait is a sex-limited female trait. It is influenced by maternal selection with cyclical fluctuations because of oscillations in food abundance. Arctic fox is a long-lived species having an age structure. The obtained results showed that compared with the simple Mendelian inheritance in the classic model, this trait inheritance allows polymorphism to be maintained in a wider range of the parameter that characterizes the advantage of survival in a small litter. Besides, adding overlapping generations to the model further broadens the parameter space for the protected polymorphism. Thus, this study shows that maternal selection and overlapping generations increases the chances of maintaining polymorphism in populations of arctic foxes.
Collapse
Affiliation(s)
- Oksana L Zhdanova
- Insititute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Efim Ya Frisman
- Institute for Complex Analysis of Regional Problem, Far Eastern Branch, Russian Academy of Sciences, Birobidzhan 679016, Russia.
| |
Collapse
|
8
|
|
9
|
Park Y, Kim Y. Partial protection from cyclical selection generates a high level of polymorphism at multiple non-neutral sites. Evolution 2019; 73:1564-1577. [PMID: 31273751 DOI: 10.1111/evo.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Temporally varying selection is known to maintain genetic polymorphism under certain restricted conditions. However, if part of a population can escape from selective pressure, a condition called the "storage effect" is produced, which greatly promotes balanced polymorphism. We investigate whether seasonally fluctuating selection can maintain polymorphism at multiple loci, if cyclically fluctuating selection is not acting on a subpopulation called a "refuge." A phenotype with a seasonally oscillating optimum is determined by alleles at multiple sites, across which the effects of mutations on phenotype are distributed randomly. This model resulted in long-term polymorphism at multiple sites, during which allele frequencies oscillate heavily, greatly increasing the level of nonneutral polymorphism. The level of polymorphism at linked neutral sites was either higher or lower than expected for unlinked neutral loci. Overall, these results suggest that for a protein-coding sequence, the nonsynonymous-to-synonymous ratio of polymorphism may exceed one. In addition, under randomly perturbed environmental oscillation, different sets of sites may take turns harboring long-term polymorphism, thus making trans-species polymorphism (which has been predicted as a classical signature of balancing selection) less likely.
Collapse
Affiliation(s)
- Yeongseon Park
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| | - Yuseob Kim
- Division of EcoScience, Ewha Womans University, Seoul, Korea.,Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|