1
|
Hartfield M, Glémin S. Polygenic selection to a changing optimum under self-fertilisation. PLoS Genet 2024; 20:e1011312. [PMID: 39018328 DOI: 10.1371/journal.pgen.1011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024] Open
Abstract
Many traits are polygenic, affected by multiple genetic variants throughout the genome. Selection acting on these traits involves co-ordinated allele-frequency changes at these underlying variants, and this process has been extensively studied in random-mating populations. Yet many species self-fertilise to some degree, which incurs changes to genetic diversity, recombination and genome segregation. These factors cumulatively influence how polygenic selection is realised in nature. Here, we use analytical modelling and stochastic simulations to investigate to what extent self-fertilisation affects polygenic adaptation to a new environment. Our analytical solutions show that while selfing can increase adaptation to an optimum, it incurs linkage disequilibrium that can slow down the initial spread of favoured mutations due to selection interference, and favours the fixation of alleles with opposing trait effects. Simulations show that while selection interference is present, high levels of selfing (at least 90%) aids adaptation to a new optimum, showing a higher long-term fitness. If mutations are pleiotropic then only a few major-effect variants fix along with many neutral hitchhikers, with a transient increase in linkage disequilibrium. These results show potential advantages to self-fertilisation when adapting to a new environment, and how the mating system affects the genetic composition of polygenic selection.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sylvain Glémin
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Tisinai SL, Busch JW. Weak response to selection on stigma-anther distance in a primarily selfing population of yellow monkeyflower. Proc Biol Sci 2024; 291:20240586. [PMID: 38889787 DOI: 10.1098/rspb.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Stebbins hypothesized that selfing lineages are evolutionary dead ends because they lack adaptive potential. While selfing populations often possess limited nucleotide variability compared with closely related outcrossers, reductions in the genetic variability of quantitative characters remain unclear, especially for key traits determining selfing rates. Yellow monkeyflower (Mimulus guttatus) populations generally outcross and maintain extensive quantitative genetic variation in floral traits. Here, we study the Joy Road population (Bodega Bay, CA, USA) of M. guttatus, where individuals exhibit stigma-anther distances (SAD) typical of primarily selfing monkeyflowers. We show that this population is closely related to nearby conspecifics on the Pacific Coast with a modest 33% reduction in genome-wide variation compared with a more highly outcrossing population. A five-generation artificial selection experiment challenged the hypothesis that the Joy Road population harbours comparatively low evolutionary potential in stigma-anther distance, a critical determinant of selfing rate in Mimulus. Artificial selection generated a weak phenotypic response, with low realized heritabilities (0.020-0.028) falling 84% below those measured for floral characters in more highly outcrossing M. guttatus. These results demonstrate substantial declines in evolutionary potential with a transition toward selfing. Whether these findings explain infrequent reversals to outcrossing or general limits on adaptation in selfers requires further investigation.
Collapse
Affiliation(s)
- Shelby L Tisinai
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Scott MF, Mackintosh C, Immler S. Gametic selection favours polyandry and selfing. PLoS Genet 2024; 20:e1010660. [PMID: 38363804 PMCID: PMC10903963 DOI: 10.1371/journal.pgen.1010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/29/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Competition among pollen or sperm (gametic selection) can cause evolution. Mating systems shape the intensity of gametic selection by determining the competitors involved, which can in turn cause the mating system itself to evolve. We model the bidirectional relationship between gametic selection and mating systems, focusing on variation in female mating frequency (monandry-polyandry) and self-fertilisation (selfing-outcrossing). First, we find that monandry and selfing both reduce the efficiency of gametic selection in removing deleterious alleles. This means that selfing can increase mutation load, in contrast to cases without gametic selection where selfing purges deleterious mutations and decreases mutation load. Second, we explore how mating systems evolve via their effect on gametic selection. By manipulating gametic selection, polyandry can evolve to increase the fitness of the offspring produced. However, this indirect advantage of post-copulatory sexual selection is weak and is likely to be overwhelmed by any direct fitness effects of mating systems. Nevertheless, gametic selection can be potentially decisive for selfing evolution because it significantly reduces inbreeding depression, which favours selfing. Thus, the presence of gametic selection could be a key factor driving selfing evolution.
Collapse
Affiliation(s)
- Michael Francis Scott
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Carl Mackintosh
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff, France
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
4
|
Fyon F, Berbel‐Filho WM. Influence of the mutation load on the genomic composition of hybrids between outcrossing and self-fertilizing species. Ecol Evol 2023; 13:e10538. [PMID: 37720059 PMCID: PMC10502466 DOI: 10.1002/ece3.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023] Open
Abstract
Hybridization is a natural process whereby two diverging evolutionary lineages reproduce and create offspring of mixed ancestry. Differences in mating systems (e.g., self-fertilization and outcrossing) are expected to affect the direction and extent of hybridization and introgression in hybrid zones. Among other factors, selfers and outcrossers are expected to differ in their mutation loads. This has been studied both theoretically and empirically; however, conflicting predictions have been made on the effects mutation loads of parental species with different mating systems can have on the genomic composition of hybrids. Here, we develop a multi-locus, selective model to study how the different mutation load built up in selfers and outcrossers as a result of selective interference and homozygosity impact the long-term genetic composition of hybrid populations. Notably, our results emphasize that genes from the parental population with lesser mutation load get rapidly overrepresented in hybrid genomes, regardless of the hybrids own mating system. When recombination tends to be more important than mutation, outcrossers' genomes tend to be of higher quality and prevail. When recombination rates are low, however, selfers' genomes may reach higher quality than outcrossers' genomes and prevail in the hybrids. Taken together, these results provide concrete insights into one of the multiple factors influencing hybrid genome ancestry and introgression patterns in hybrid zones containing species with different mating systems.
Collapse
Affiliation(s)
- Fréderic Fyon
- Department of BiologyRoyal Holloway University of LondonEghamUK
| | | |
Collapse
|
5
|
Clo J. Polyploidization: Consequences of genome doubling on the evolutionary potential of populations. AMERICAN JOURNAL OF BOTANY 2022; 109:1213-1220. [PMID: 35862788 DOI: 10.1002/ajb2.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome duplication is common in plants and is considered to have a broad range of effects on individuals' phenotypes and genomes and to be an important driver of plant adaptation and speciation. Despite their increased capacity to cope with challenging environments, polyploid lineages are generally as prone to extinction, and sometimes more prone, than their diploid progenitors. Although several explanations have been proposed to explain the short- and long-term disadvantages of polyploidy on the survival probability of populations, the consequences of whole-genome doubling on the heritable variance remain poorly studied. Whole-genome doubling can have major effects not only on the genetics, but also on the ecology and life history of the populations. Modifications of other properties of populations can reverse the effects of polyploidization per se on heritable variance. In this synthesis, I summarize the empirical and theoretical knowledge about the multifarious consequences of genome doubling on the heritable variance of quantitative traits and on the evolutionary potential of polyploid populations compared to their diploid progenitors. I propose several ways to decipher the consequences of whole-genome doubling on survival probability and to study the further consequences of shifting the ecological niche and life-history traits of a population. I also highlight some practical considerations for comparing the heritable variance of a trait among different cytotypes. Such investigations appear to be timely and necessary to understand more about the paradoxical aspects of polyploidization and to understand the evolutionary potential of polyploid lineages in a global warming context.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
6
|
Gay L, Dhinaut J, Jullien M, Vitalis R, Navascués M, Ranwez V, Ronfort J. Evolution of flowering time in a selfing annual plant: Roles of adaptation and genetic drift. Ecol Evol 2022; 12:e8555. [PMID: 35127051 PMCID: PMC8794724 DOI: 10.1002/ece3.8555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022] Open
Abstract
Resurrection studies are a useful tool to measure how phenotypic traits have changed in populations through time. If these trait modifications correlate with the environmental changes that occurred during the time period, it suggests that the phenotypic changes could be a response to selection. Selfing, through its reduction of effective size, could challenge the ability of a population to adapt to environmental changes. Here, we used a resurrection study to test for adaptation in a selfing population of Medicago truncatula, by comparing the genetic composition and flowering times across 22 generations. We found evidence for evolution toward earlier flowering times by about two days and a peculiar genetic structure, typical of highly selfing populations, where some multilocus genotypes (MLGs) are persistent through time. We used the change in frequency of the MLGs through time as a multilocus fitness measure and built a selection gradient that suggests evolution toward earlier flowering times. Yet, a simulation model revealed that the observed change in flowering time could be explained by drift alone, provided the effective size of the population is small enough (<150). These analyses suffer from the difficulty to estimate the effective size in a highly selfing population, where effective recombination is severely reduced.
Collapse
Affiliation(s)
- Laurène Gay
- CIRADINRAEInstitut AgroUMR AGAP InstitutUniv MontpellierMontpellierFrance
| | - Julien Dhinaut
- CIRADINRAEInstitut AgroUMR AGAP InstitutUniv MontpellierMontpellierFrance
- Present address:
Evolutionary Biology and Ecology of AlgaeUPMCUniversity of Paris VI, UC, UACH, UMI 3614CNRSSorbonne UniversitésRoscoffFrance
| | - Margaux Jullien
- CIRADINRAEInstitut AgroUMR AGAP InstitutUniv MontpellierMontpellierFrance
- Present address:
INRAUniv. Paris‐SudCNRSAgroParisTechGQE – Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Renaud Vitalis
- CIRADINRAEInstitut AgroIRDCBGPUniv MontpellierMontpellierFrance
| | | | - Vincent Ranwez
- CIRADINRAEInstitut AgroUMR AGAP InstitutUniv MontpellierMontpellierFrance
| | - Joëlle Ronfort
- CIRADINRAEInstitut AgroUMR AGAP InstitutUniv MontpellierMontpellierFrance
| |
Collapse
|
7
|
Clo J, Ronfort J, Gay L. Fitness consequences of hybridization in a predominantly selfing species: insights into the role of dominance and epistatic incompatibilities. Heredity (Edinb) 2021; 127:393-400. [PMID: 34365470 PMCID: PMC8478955 DOI: 10.1038/s41437-021-00465-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Studying the consequences of hybridization on plant performance is insightful to understand the adaptive potential of populations, notably at local scales. Due to reduced effective recombination, predominantly selfing species are organized in highly homozygous multi-locus-genotypes (or lines) that accumulate genetic differentiation both among- and within-populations. This high level of homozygosity facilitates the dissection of the genetic basis of hybrid performance in highly selfing species, which gives insights into the mechanisms of reproductive isolation between lines. Here, we explored the fitness consequences of hybridization events between natural inbred lines of the predominantly selfing species Medicago truncatula, at both within- and among-populations scales. We found that hybridization has opposite effects pending on studied fitness proxies, with dry mass showing heterosis, and seed production showing outbreeding depression. Although we found significant patterns of heterosis and outbreeding depression, they did not differ significantly for within- compared to among-population crosses. Family-based analyses allowed us to determine that hybrid differentiation was mostly due to dominance and epistasis. Dominance and/or dominant epistatic interactions increased dry mass, while decreasing seed production, and recessive epistatic interactions mostly had a positive effect on both fitness proxies. Our results illustrate how genetic incompatibilities can accumulate at a very local scale among multi-locus-genotypes, and how non-additive genetic effects contribute to heterosis and outbreeding depression.
Collapse
Affiliation(s)
- Josselin Clo
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France ,grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Joëlle Ronfort
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurène Gay
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
8
|
Clo J, Opedal ØH. Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species. Evolution 2021; 75:1920-1935. [PMID: 34219233 DOI: 10.1111/evo.14304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Recurrent self-fertilization is thought to lead to reduced adaptive potential by decreasing the genetic diversity of populations, thus leading selfing lineages down an evolutionary "blind alley." Although well supported theoretically, empirical support for reduced adaptability in selfing species is limited. One limitation of classical theoretical models is that they assume pure additivity of the fitness-related traits that are under stabilizing selection, despite ample evidence that quantitative traits are subject to dominance. Here, we relax this assumption and explore the effect of dominance on a fitness-related trait under stabilizing selection for populations that differ in selfing rates. By decomposing the genetic variance into additional components specific to inbred populations, we show that dominance components can explain a substantial part of the genetic variance of inbred populations. We also show that ignoring these components leads to an upward bias in the predicted response to selection. Finally, we show that when considering the effect of dominance, the short-term evolutionary potential of populations remains comparable across the entire gradient in outcrossing rates, and genetic associations can even make selfing populations more evolvable on the longer term, reconciling theoretical, and empirical results.
Collapse
Affiliation(s)
- Josselin Clo
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France.,Department of Botany, Charles University, Prague, Czechia
| | | |
Collapse
|
9
|
Lesaffre T, Billiard S. On Deleterious Mutations in Perennials: Inbreeding Depression, Mutation Load, and Life-History Evolution. Am Nat 2021; 197:E143-E155. [PMID: 33908825 DOI: 10.1086/713499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn angiosperms, perennials typically present much higher levels of inbreeding depression than annuals. One hypothesis to explain this pattern stems from the observation that inbreeding depression is expressed across multiple life stages in angiosperms. It posits that increased inbreeding depression in more long-lived species could be explained by differences in the way mutations affect fitness, through the life stages at which they are expressed. In this study, we investigate this hypothesis. We combine a physiological growth model and multilocus population genetics approaches to describe a full genotype-to-phenotype-to-fitness map. We study the behavior of mutations affecting growth or survival and explore their consequences in terms of inbreeding depression and mutation load. Although our results agree with empirical data only within a narrow range of conditions, we argue that they may point us toward the type of traits capable of generating high inbreeding depression in long-lived species-that is, traits under sufficiently strong selection, on which selection decreases sharply as life expectancy increases. Then we study the role deleterious mutations maintained at mutation-selection balance may play in the joint evolution of growth and survival strategies.
Collapse
|
10
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
11
|
Clo J, Ronfort J, Abu Awad D. Hidden genetic variance contributes to increase the short-term adaptive potential of selfing populations. J Evol Biol 2020; 33:1203-1215. [PMID: 32516463 DOI: 10.1111/jeb.13660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
Abstract
Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self-fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non-negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self-fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.
Collapse
Affiliation(s)
- Josselin Clo
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Joëlle Ronfort
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Diala Abu Awad
- AGAP, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France.,Department of Population Genetics, Technische Universität München, Freising, Germany
| |
Collapse
|
12
|
Abu Awad D, Roze D. Epistasis, inbreeding depression, and the evolution of self-fertilization. Evolution 2020; 74:1301-1320. [PMID: 32386235 DOI: 10.1111/evo.13961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 11/29/2022]
Abstract
Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.
Collapse
Affiliation(s)
- Diala Abu Awad
- Department of Population Genetics, Technical University of Munich, Munich, 80333, Germany
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, UMI 3614, CNRS, Roscoff, 29688, France.,Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29688, France
| |
Collapse
|
13
|
Sachdeva H. Effect of partial selfing and polygenic selection on establishment in a new habitat. Evolution 2019; 73:1729-1745. [PMID: 31339550 PMCID: PMC6771878 DOI: 10.1111/evo.13812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023]
Abstract
This article analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the inbreeding history model to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple nonidentical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection is discussed.
Collapse
Affiliation(s)
- Himani Sachdeva
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| |
Collapse
|
14
|
Oakley CG, Lundemo S, Ågren J, Schemske DW. Heterosis is common and inbreeding depression absent in natural populations of
Arabidopsis thaliana. J Evol Biol 2019; 32:592-603. [DOI: 10.1111/jeb.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Sverre Lundemo
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Jon Ågren
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Douglas W. Schemske
- Department of Plant Biology W. K. Kellogg Biological Station Michigan State University East Lansing Michigan
| |
Collapse
|
15
|
Jullien M, Navascués M, Ronfort J, Loridon K, Gay L. Structure of multilocus genetic diversity in predominantly selfing populations. Heredity (Edinb) 2019; 123:176-191. [PMID: 30670844 DOI: 10.1038/s41437-019-0182-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
Predominantly selfing populations are expected to have reduced effective population sizes due to nonrandom sampling of gametes, demographic stochasticity (bottlenecks or extinction-recolonization), and large scale hitchhiking (reduced effective recombination). Thus, they are expected to display low genetic diversity, which was confirmed by empirical studies. The structure of genetic diversity in predominantly selfing species is dramatically different from outcrossing ones, with populations often dominated by one or a few multilocus genotypes (MLGs) coexisting with several rare genotypes. Therefore, multilocus diversity indices are relevant to describe diversity in selfing populations. Here, we use simulations to provide analytical expectations for multilocus indices and examine whether selfing alone can be responsible for the high-frequency MLGs persistent through time in the absence of selection. We then examine how combining single and multilocus indices of diversity may be insightful to distinguish the effects of selfing, population size, and more complex demographic events (bottlenecks, migration, admixture, or extinction-recolonization). Finally, we examine how temporal changes in MLG frequencies can be insightful to understand the evolutionary trajectory of a given population. We show that combinations of selfing and small demographic sizes can result in high-frequency MLGs, as observed in natural populations. We also show how different demographic scenarios can be distinguished by the parallel analysis of single and multilocus indices of diversity, and we emphasize the importance of temporal data for the study of predominantly selfing populations. Finally, the comparison of our simulations with empirical data on populations of Medicago truncatula confirms the pertinence of our simulation framework.
Collapse
Affiliation(s)
- Margaux Jullien
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Miguel Navascués
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Institut de Biologie Computationnelle IBC, Montpellier, France
| | - Joëlle Ronfort
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Karine Loridon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurène Gay
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
16
|
Charlesworth B. Mutational load, inbreeding depression and heterosis in subdivided populations. Mol Ecol 2018; 27:4991-5003. [DOI: 10.1111/mec.14933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|