1
|
Faria FS, Areal M, Bitner-Mathé BC. Thermal Stress and Adult Fitness in a Drosophila suzukii Neotropical Propagule. NEOTROPICAL ENTOMOLOGY 2023; 52:993-1004. [PMID: 37702970 DOI: 10.1007/s13744-023-01075-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023]
Abstract
Drosophila suzukii (Matsumura 1931) is a cosmopolitan horticultural pest originally from temperate East Asia; yet, its recent introduction in southeast and central Brazil raises the possibility it might expand into warmer climatic zones. In theoretical terms, the adaptive potential of invasive species can be impaired by the lack of genetic variation, but, on the other hand, phenotypic plasticity might play an important role in the adaptation to the new environment. In this context, we investigated the effects of temperature variation (18°C, 22°C, and 28°C) on fitness traits and size of male reproductive organs (accessory glands and testis) in a natural D. suzukii population recently introduced in the neotropical region. Development time decreased significantly with increasing temperature, but egg-to-adult survival was not affected, attaining rates around 50% for the three temperatures. Development at 28°C affected differentially adult male and female biological performance: males displayed higher mortality and severe and permanent reduction in offspring production, whereas females showed the same mortality as controls and a temporary decrease in offspring production, followed of a clear recovery. Finally, reproductive organs size in immature and mature males was affected by developmental temperature variation in the following ways. Testis length decreased with body size (i.e., at higher temperatures) and increased with maturation time after adult hatching, whereas for accessory glands there was no significant difference between different temperatures, resulting in proportionally larger glands for smaller body sizes. These results show differences in developmental dynamics of reproductive tract structures due to temperature variation.
Collapse
Affiliation(s)
- Flavio Silva Faria
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Areal
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Pérez‐Pereira N, López‐Cortegano E, García‐Dorado A, Caballero A. Prediction of fitness under different breeding designs in conservation programs. Anim Conserv 2022. [DOI: 10.1111/acv.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Pérez‐Pereira
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - E. López‐Cortegano
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - A. García‐Dorado
- Departamento de Genética, Facultad de Ciencias Biológicas Universidad Complutense Madrid Spain
| | - A. Caballero
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| |
Collapse
|
3
|
Zhao L, Li Y, Lou J, Yang Z, Liao H, Fu Q, Guo Z, Lian S, Hu X, Bao Z. Transcriptomic Profiling Provides Insights into Inbreeding Depression in Yesso Scallop Patinopecten yessoensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:623-633. [PMID: 31300903 DOI: 10.1007/s10126-019-09907-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Inbreeding often causes a decline in biological fitness, known as inbreeding depression. In genetics study, inbreeding coefficient f gives the proportion by which the heterozygosity of an individual is reduced by inbreeding. With the development of high-throughput sequencing, researchers were able to perform deep approaches to investigate which genes are affected by inbreeding and reveal some molecular underpinnings of inbreeding depression. As one commercially important species, Yesso scallop Patinopecten yessoensis confront the same dilemma of inbreeding depression. To examine how inbreeding affects gene expression, we compared the transcriptome of two experimentally selfing families with inbreeding coefficient f reached 0.5 as well as one natural population (f ≈ 0) of P. yessoensis. A total of 24 RNA-Seq libraries were constructed using scallop adductor muscle, and eventually 676.56 M (96.85%) HQ reads were acquired. Based on differential gene analysis, we were able to identify nine common differentially expressed genes (DEGs) across the top-ranked 30 DEGs in both selfing families in comparation with the natural population. Remarkable, through weighted gene co-expression network analysis (WGCNA), five common DEGs were found enriched in the most significant inbreeding related functional module M14 (FDR = 1.64E-156), including SREBP1, G3BP2, SBK1, KIAA1161, and AATs-Glupro. These five genes showed significantly higher expression in self-bred progeny. Suggested by the genetic functional analysis, up-regulated SREBP1, G3BP2, and KIAA1161 may suggest a perturbing lipid metabolism, a severe inframammary reaction or immune response, and a stress-responsive behavior. Besides, the significant higher SBK1 and AATs-Glupro may reflect the abnormal cellular physiological situation. Together, these genetic aberrant transcriptomic performances may contribute to inbreeding depression in P. yessoensis, deteriorating the stress tolerance and survival phenotype in self-bred progeny. Our results would lay a foundation for further comprehensive understanding of bivalve inbreeding depression, which may potentially benefit the genetic breeding for scallop aquaculture.
Collapse
Affiliation(s)
- Liang Zhao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhihui Yang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Huan Liao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Qiang Fu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenyi Guo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Shanshan Lian
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
5
|
Ali N. Digest: Stress and inbreeding depression in Drosophila melanogaster. Evolution 2018; 72:1727-1729. [PMID: 30024026 DOI: 10.1111/evo.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022]
Abstract
Do stressful conditions exacerbate inbreeding depression? Using Drosophila melanogaster, Schou et al. (2018) examine the mechanisms underlying the interaction between stress and inbreeding depression. The authors found that gene expression in inbred individuals was highly stochastic under benign conditions, but differential gene expression in inbred individuals was reduced compared to controls under stressful conditions.
Collapse
Affiliation(s)
- Nadya Ali
- Committee on Evolutionary Biology, University of Chicago (Doctoral student), Chicago, Illinois, 60637
| |
Collapse
|