1
|
Lehtonen J, Parker GA, Whittington CM. The logic of conventional and reversed Bateman gradients. Proc Biol Sci 2024; 291:20242126. [PMID: 39501887 PMCID: PMC11538987 DOI: 10.1098/rspb.2024.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The Bateman gradient is a central concept in sexual selection theory that relates reproductive success to mate number, with important consequences for sex-specific selection. The conventional expectation is that Bateman gradients are steeper in males than females, implying that males benefit more from multiple mating than females do. This claim is supported by much empirical evidence as well as mathematical modelling. However, under some reproductive systems, reversed Bateman gradients are observed, perhaps most notably in syngnathid fishes with male pregnancy. Unlike conventional Bateman gradients, the causal basis of such reversed Bateman gradients has never been modelled mathematically. Here, we present a sex-neutral mathematical model demonstrating how restrictions in capacity for carrying or incubating gametes and embryos (brooding) interact with anisogamy, generating both conventional and reversed Bateman gradients from a single mathematical model. The results clearly demonstrate how anisogamy tends to cause conventional Bateman gradients, but diminishing male brooding capacity under male pregnancy or nesting causes a gradual reversal from conventional to fully 'reversed' Bateman gradients.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
| | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Camilla M. Whittington
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
2
|
Carvajal-Rodríguez A. Unifying quantification methods for sexual selection and assortative mating using information theory. Theor Popul Biol 2024; 158:206-215. [PMID: 38917935 DOI: 10.1016/j.tpb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating. In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established. Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞). It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.
Collapse
Affiliation(s)
- A Carvajal-Rodríguez
- Centro de Investigación Mariña (CIM), Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo 36310, Spain.
| |
Collapse
|
3
|
van Eyndhoven F, Cameron EZ, Flanagan SP. High rates of male courtship in a female-ornamented pipefish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231428. [PMID: 37885981 PMCID: PMC10598436 DOI: 10.1098/rsos.231428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
In species with sex-specific signalling traits that appear to be ornamental (i.e. are conspicuous and with no obvious natural selection benefit), the ornamented sex typically initiates courtship and is most active in courtship. Here, we report for the first time courtship displays in the extremely sexually dimorphic, female-ornamented wide-bodied pipefish (Stigmatopora nigra), revealing unexpected behaviours. Females use their sex-specific ornament during courtship displays, as expected, but rarely in female-female interactions. Surprisingly, males initiated 61% of reciprocated courtship bouts and chased females in 17% of the bouts. This chasing behaviour could be a form of male harassment or be indicative of female disinterest in ardent males, either of which was unexpected to be found in this female-ornamented species. Our results highlight the need to study the details of species' behaviours in considering the potential roles of sexual selection and sexual conflict in shaping sexual dimorphism.
Collapse
Affiliation(s)
- Fleur van Eyndhoven
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Elissa Z. Cameron
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Lavaut E, Valero M, Mauger S, Guillemin ML, Destombe C, Dufay M. Sexual selection in seaweed? Testing Bateman's principles in the red alga Gracilaria gracilis. Proc Biol Sci 2023; 290:20231668. [PMID: 37700657 PMCID: PMC10498045 DOI: 10.1098/rspb.2023.1668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
In anisogamous species, sexual selection is expected to be stronger in males. Bateman's principles state that the variance in (i) reproductive and (ii) mating success is greater for males, and (iii) the relationship between reproductive success and mating success (the Bateman gradient) is also stronger for males than for females. Sexual selection, based on Bateman's principles, has been demonstrated in animals and some angiosperms, but never in a seaweed. Here we focus on the oogamous haploid-diploid rhodophyte Gracilaria gracilis in which previous studies have shown evidence for non-random mating, suggesting the existence of male-male competition and female choice. We estimated mating and reproductive success using paternity analyses in a natural population where up to 92% of fertilizations occurred between partners of that population. The results show that the variance in mating success is significantly greater in males than in females and that the Bateman gradient is positive only in males. Distance to female partners also explains a minor part of the variance in male mating success. Although there is no evidence for sexual dimorphism, our study supports the hypothesis that sexual selection occurs in G. gracilis, probably on male traits, even if we cannot observe, characterize or quantify them yet.
Collapse
Affiliation(s)
- E. Lavaut
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. Valero
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - S. Mauger
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. L. Guillemin
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - C. Destombe
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. Dufay
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Moschilla JA, Tomkins JL, Simmons LW. Among-individual variation in behaviour and its effect on reproductive success. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Sexual selection in females and the evolution of polyandry. PLoS Biol 2023; 21:e3001916. [PMID: 36626380 PMCID: PMC9831318 DOI: 10.1371/journal.pbio.3001916] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023] Open
Abstract
Over the last decades, the field of sexual selection underwent a paradigm shift from sexual-stereotype thinking of "eager" males and "coy" females towards a more nuanced perspective acknowledging that not only males but also females can benefit from multiple mating and compete for mating partners. Yet, sexual selection in females is still considered a peculiarity, and the evolution of polyandry is often viewed to result from a higher mating interest of males. Here, we present meta-analytic evidence from 77 species across a broad range of animal taxa to demonstrate that female reproductive success is overall positively correlated with mating success, suggesting that females typically benefit from multiple mating. Importantly, we found that these fitness gains likely promote the evolution of polyandry. Our findings offer support for the idea that sexual selection is widespread in females and to play a key role for the evolution of animal mating systems. Thereby, our results extend our understanding of the evolutionary consequences of sexual reproduction and contribute to a more balanced view of how sexual selection operates in males and females.
Collapse
|
7
|
Hare RM, Simmons LW. Bateman gradients reflect variation in sexual selection in a species with dynamic sex roles. J Evol Biol 2022; 35:1206-1217. [PMID: 35932479 PMCID: PMC9545144 DOI: 10.1111/jeb.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Bateman gradients, the slope of the regression of reproductive success on mating success, are among the most commonly reported measures of sexual selection. They are particularly insightful in species with reversed sex roles, where females are expected to be under sexual selection. We measured Bateman gradients in replicate experimental populations of the spermatophore gift-giving bushcricket Kawanaphila nartee (Orthoptera: Tettigoniidae). In this species, the operational sex ratio (OSR) and thus the sex competing for mates varies depending on the availability of pollen food resources: under pollen-limited regimens females are more competitive, whereas under pollen-rich regimens males are more competitive. We maintained populations in enclosures with either limited or supplemented pollen and calculated Bateman gradients for males and females under both conditions. Bateman gradients were significantly positive in males, and the slope was steeper in pollen-supplemented populations where the OSR was more male-biased. Bateman gradients for females were shallow and nonsignificant regardless of pollen availability. Our results show that the strength of sexual selection on males can depend on environmental context. The lack of significant gradients among females may reflect experimental limitations on our ability to estimate Bateman gradients in female K nartee.
Collapse
Affiliation(s)
- Robin M Hare
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Abstract
In 1948, Angus Bateman presented experiments and concepts that remain influential and debated in sexual selection. The Bateman gradient relates reproductive success to mate number, and Bateman presented this as the cause of intra-masculine selection. A deeper causal level was subsequently asserted: that the ultimate cause of sex differences in Bateman gradients is the sex difference in gamete numbers, an argument that remains controversial and without mathematical backup. Here I develop models showing how asymmetry in gamete numbers alone can generate steeper Bateman gradients in males. This conclusion remains when the further asymmetry of internal fertilisation is added to the model and fertilisation is efficient. Strong gamete limitation can push Bateman gradients towards equality under external fertilisation and reverse them under internal fertilisation. Thus, this study provides a mathematical formalisation of Bateman’s brief verbal claim, while demonstrating that the link between gamete number and Bateman gradients is not inevitable nor trivial. In 1948, Bateman asserted that sexual selection is driven by the sex difference in gamete numbers. Lehtonen presents mathematical models broadly validating this controversial claim, while pointing out selection can be reversed under some conditions.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
9
|
Fritzsche K, Henshaw JM, Johnson BD, Jones AG. The 150th anniversary of The Descent of Man: Darwin and the impact of sex-role reversal on sexual selection research. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The year 2021 marks the 150th anniversary of the publication of Charles Darwin’s extraordinary book The Descent of Man and Selection in Relation to Sex. Here, we review the history and impact of a single profound insight from The Descent of Man: that, in some few species, females rather than males compete for access to mates. In other words, these species are ‘sex-role reversed’ with respect to mating competition and sexual selection compared to the majority of species in which sexual selection acts most strongly on males. Over the subsequent 150 years, sex-role-reversed species have motivated multiple key conceptual breakthroughs in sexual selection. The surprising mating dynamics of such species challenged scientists’ preconceptions, forcing them to examine implicit assumptions and stereotypes. This wider worldview has led to a richer and more nuanced understanding of animal mating systems and, in particular, to a proper appreciation for the fundamental role that females play in shaping these systems. Sex-role-reversed species have considerable untapped potential and will continue to contribute to sexual selection research in the decades to come.
Collapse
Affiliation(s)
- Karoline Fritzsche
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Jonathan M Henshaw
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | | | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
10
|
|
11
|
Marie‐Orleach L, Vellnow N, Schärer L. The repeatable opportunity for selection differs between pre- and postcopulatory fitness components. Evol Lett 2021; 5:101-114. [PMID: 33552539 PMCID: PMC7857279 DOI: 10.1002/evl3.210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
In species with multiple mating, intense sexual selection may occur both before and after copulation. However, comparing the strength of pre- and postcopulatory selection is challenging, because (i) postcopulatory processes are generally difficult to observe and (ii) the often-used opportunity for selection (I) metric contains both deterministic and stochastic components. Here, we quantified pre- and postcopulatory male fitness components of the simultaneously hermaphroditic flatworm, Macrostomum lignano. We did this by tracking fluorescent sperm-using transgenics-through the transparent body of sperm recipients, enabling to observe postcopulatory processes in vivo. Moreover, we sequentially exposed focal worms to three independent mating groups, and in each assessed their mating success, sperm-transfer efficiency, sperm fertilizing efficiency, and partner fecundity. Based on these multiple measures, we could, for each fitness component, combine the variance (I) with the repeatability (R) in individual success to assess the amount of repeatable variance in individual success-a measure we call the repeatable opportunity for selection (IR ). We found higher repeatable opportunity for selection in sperm-transfer efficiency and sperm fertilizing efficiency compared to mating success, which clearly suggests that postcopulatory selection is stronger than precopulatory selection. Our study demonstrates that the opportunity for selection contains a repeatable deterministic component, which can be assessed and disentangled from the often large stochastic component, to provide a better estimate of the strength of selection.
Collapse
Affiliation(s)
- Lucas Marie‐Orleach
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBasel4051Switzerland
- School of Biology, Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Natural History MuseumUniversity of OsloOslo0318Norway
- CNRS, ECOBIO (Écosystèmes, Biodiversité, Évolution) – UMR 6553Université de Rennes 1Rennes35000France
| | - Nikolas Vellnow
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBasel4051Switzerland
- Evolutionary BiologyBielefeld UniversityBielefeldDE‐33615Germany
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBasel4051Switzerland
| |
Collapse
|
12
|
Henshaw JM, Morrissey MB, Jones AG. Quantifying the causal pathways contributing to natural selection. Evolution 2020; 74:2560-2574. [DOI: 10.1111/evo.14091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan M. Henshaw
- Institute of Biology I University of Freiburg Freiburg im Breisgau 79104 Germany
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| | | | - Adam G. Jones
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| |
Collapse
|
13
|
Alonzo SH, Servedio MR. Grey zones of sexual selection: why is finding a modern definition so hard? Proc Biol Sci 2019; 286:20191325. [PMID: 31431160 DOI: 10.1098/rspb.2019.1325] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual selection has long been acknowledged as an important evolutionary force, capable of shaping phenotypes ranging from fascinating and unusual displays to cryptic traits whose function is only uncovered by careful study. Yet, despite decades of research, reaching a consensus definition of the term 'sexual selection' has proved difficult. Here we explore why arriving at a unifying definition of sexual selection is so hard. While some researchers have argued about whether sexual selection should be considered a form of natural selection, we concentrate on where the line between sexual selection and other forms of selection falls. We focus on identifying the 'grey zones' of sexual selection by illustrating cases in which application of the term 'sexual selection' would be considered controversial or ambiguous. We believe that clarifying why sexual selection is so difficult to define is an essential first step forward towards greater clarity, and if possible towards reaching a consensus definition. We suggest that a more nuanced perspective may be necessary, particularly one that specifies for cases of 'sexual selection' why the term is used or whether they fall into a grey zone.
Collapse
Affiliation(s)
- Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27516, USA
| |
Collapse
|
14
|
Borgerhoff Mulder M, Ross CT. Unpacking mating success and testing Bateman's principles in a human population. Proc Biol Sci 2019; 286:20191516. [PMID: 31409254 PMCID: PMC6710586 DOI: 10.1098/rspb.2019.1516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human marriage systems, characterized by long-term partnerships and extended windows of parental care, differ from the mating systems of pulsed or seasonally breeding non-human animals in which Bateman’s principles were originally tested. These features, paradigmatic of but not unique to humans, complicate the accurate measurement of mating success in evaluating Bateman’s three principles. Here, we unpack the concept of mating success into distinct components: number of partners, number of years partnered, the timing of partnerships, and the quality of partners. Drawing on longitudinal records of marriage and reproduction collected in a natural-fertility East African population over a 20-year period, we test and compare various models of the relationship between mating success and reproductive success (RS), and show that an accurate assessment of male and female reproductive behaviour requires consideration of all major components of mating success. Furthermore, we demonstrate that while Bateman’s third principle holds when mating success is defined in terms of years married, women’s fitness increases whereas men’s fitness decreases from an increase in the number of marriage partners, holding constant the total effective duration of marriages. We discuss these findings in terms of the distinct, sex-specific pathways through which RS can be optimized, and comment on the contribution of this approach to the broader study of sexual selection.
Collapse
Affiliation(s)
| | - Cody T Ross
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology and Culture, Leipzig, Germany
| |
Collapse
|
15
|
Fox RJ, Fromhage L, Jennions MD. Sexual selection, phenotypic plasticity and female reproductive output. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180184. [PMID: 30966965 PMCID: PMC6365872 DOI: 10.1098/rstb.2018.0184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
In a rapidly changing environment, does sexual selection on males elevate a population's reproductive output? If so, does phenotypic plasticity enhance or diminish any such effect? We outline two routes by which sexual selection can influence the reproductive output of a population: a genetic correlation between male sexual competitiveness and female lifetime reproductive success; and direct effects of males on females' breeding success. We then discuss how phenotypic plasticity of sexually selected male traits and/or female responses (e.g. plasticity in mate choice), as the environment changes, might influence how sexual selection affects a population's reproductive output. Two key points emerge. First, condition-dependent expression of male sexual traits makes it likely that sexual selection increases female fitness if reproductively successful males disproportionately transfer genes that are under natural selection in both sexes, such as genes for foraging efficiency. Condition-dependence is a form of phenotypic plasticity if some of the variation in net resource acquisition and assimilation is attributable to the environment rather than solely genetic in origin. Second, the optimal allocation of resources into different condition-dependent traits depends on their marginal fitness gains. As male condition improves, this can therefore increase or, though rarely highlighted, actually decrease the expression of sexually selected traits. It is therefore crucial to understand how condition determines male allocation of resources to different sexually selected traits that vary in their immediate effects on female reproductive output (e.g. ornaments versus coercive behaviour). In addition, changes in the distribution of condition among males as the environment shifts could reduce phenotypic variance in certain male traits, thereby reducing the strength of sexual selection imposed by females. Studies of adaptive evolution under rapid environmental change should consider the possibility that phenotypic plasticity of sexually selected male traits, even if it elevates male fitness, could have a negative effect on female reproductive output, thereby increasing the risk of population extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, Jyvaskyla 40014, Finland
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
16
|
Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nat Commun 2019; 10:283. [PMID: 30655522 PMCID: PMC6336784 DOI: 10.1038/s41467-018-08113-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophila. Theory predicts that mating systems influence the relative strength of sexual selection before and after mating. Here, Morimoto and colleagues demonstrate that higher polyandry weakens precopulatory while strengthening post-copulatory sexual selection on males in Drosophila melanogaster.
Collapse
|
17
|
Hare RM, Simmons LW. Sexual selection and its evolutionary consequences in female animals. Biol Rev Camb Philos Soc 2018; 94:929-956. [DOI: 10.1111/brv.12484] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Robin M. Hare
- Centre for Evolutionary Biology, School of Biological Sciences University of Western Australia 35 Stirling Highway, Perth, 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences University of Western Australia 35 Stirling Highway, Perth, 6009 Australia
| |
Collapse
|