1
|
Sadras VO, Hayman PT. The causal arrows from genotype, environment, and management to plant phenotype are double headed. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:917-930. [PMID: 39545971 PMCID: PMC11850972 DOI: 10.1093/jxb/erae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Cause-and-effect arrows are drawn from genotype (G), environment (E), and agronomic management (M) to the plant phenotype in crop stands in a useful but incomplete framework that informs research questions, experimental design, statistical analysis, data interpretation, modelling, and breeding and agronomic applications. Here we focus on the overlooked bidirectionality of these arrows. The phenotype-to-genotype arrow includes increased mutation rates in stressed phenotypes, relative to basal rates. From a developmental viewpoint, the phenotype modulates gene expression, returning multiple cellular phenotypes with a common genome. The phenotype-to-environment arrow is captured in the process of niche construction, which spans from persistent and global to transient and local. Research on crop rotations recognizes the influence of the phenotype on the environment but is divorced from niche construction theory. The phenotype-to-management arrow involves, for example, a diseased crop that may trigger fungicide treatment. Making explicit the bidirectionality of the arrows in the G×E×M framework contributes to narrowing the gap between data-driven technologies and integrative theory, and is an invitation to think cautiously of the internal teleonomy of plants in contrast to the view of the phenotype as the passive end of the arrows in the current framework.
Collapse
Affiliation(s)
- Victor O Sadras
- South Australian Research and Development Institute; School of Agriculture, Food and Wine, The University of Adelaide; College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Peter T Hayman
- South Australian Research and Development Institute; School of Agriculture, Food and Wine, The University of Adelaide; College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Callens M, Rose CJ, Finnegan M, Gatchitch F, Simon L, Hamet J, Pradier L, Dubois MP, Bedhomme S. Hypermutator emergence in experimental Escherichia coli populations is stress-type dependent. Evol Lett 2023; 7:252-261. [PMID: 37475751 PMCID: PMC10355175 DOI: 10.1093/evlett/qrad019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 07/22/2023] Open
Abstract
Genotypes exhibiting an increased mutation rate, called hypermutators, can propagate in microbial populations because they can have an advantage due to the higher supply of beneficial mutations needed for adaptation. Although this is a frequently observed phenomenon in natural and laboratory populations, little is known about the influence of parameters such as the degree of maladaptation, stress intensity, and the genetic architecture for adaptation on the emergence of hypermutators. To address this knowledge gap, we measured the emergence of hypermutators over ~1,000 generations in experimental Escherichia coli populations exposed to different levels of osmotic or antibiotic stress. Our stress types were chosen based on the assumption that the genetic architecture for adaptation differs between them. Indeed, we show that the size of the genetic basis for adaptation is larger for osmotic stress compared to antibiotic stress. During our experiment, we observed an increased emergence of hypermutators in populations exposed to osmotic stress but not in those exposed to antibiotic stress, indicating that hypermutator emergence rates are stress type dependent. These results support our hypothesis that hypermutator emergence is linked to the size of the genetic basis for adaptation. In addition, we identified other parameters that covaried with stress type (stress level and IS transposition rates) that might have contributed to an increased hypermutator provision and selection. Our results provide a first comparison of hypermutator emergence rates under varying stress conditions and point towards complex interactions of multiple stress-related factors on the evolution of mutation rates.
Collapse
Affiliation(s)
- Martijn Callens
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
- Animal Sciences Unit—Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Caroline J Rose
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | - Michael Finnegan
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | | | - Léna Simon
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
- Université Clermont Auvergne, VetAgro Sup, Lempdes, France
| | - Jeanne Hamet
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | - Léa Pradier
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | | | - Stéphanie Bedhomme
- Corresponding author: CEFE, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
3
|
Melde RH, Bao K, Sharp NP. Recent insights into the evolution of mutation rates in yeast. Curr Opin Genet Dev 2022; 76:101953. [PMID: 35834945 PMCID: PMC9491374 DOI: 10.1016/j.gde.2022.101953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/08/2023]
Abstract
Mutation is the origin of all genetic variation, good and bad. The mutation process can evolve in response to mutations, positive or negative selection, and genetic drift, but how these forces contribute to mutation-rate variation is an unsolved problem at the heart of genetics research. Mutations can be challenging to measure, but genome sequencing and other tools have allowed for the collection of larger and more detailed datasets, particularly in the yeast-model system. We review key hypotheses for the evolution of mutation rates and describe recent advances in understanding variation in mutational properties within and among yeast species. The multidimensional spectrum of mutations is increasingly recognized as holding valuable clues about how this important process evolves.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, USA.
| | - Kevin Bao
- Department of Genetics, University of Wisconsin-Madison, USA
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, USA. https://twitter.com/@sharpnath
| |
Collapse
|
4
|
Harris KB, Flynn KM, Cooper VS. Polygenic Adaptation and Clonal Interference Enable Sustained Diversity in Experimental Pseudomonas aeruginosa Populations. Mol Biol Evol 2021; 38:5359-5375. [PMID: 34410431 PMCID: PMC8662654 DOI: 10.1093/molbev/msab248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How biodiversity arises and can be maintained in asexual microbial populations growing on a single resource remains unclear. Many models presume that beneficial genotypes will outgrow others and purge variation via selective sweeps. Environmental structure like that found in biofilms, which are associated with persistence during infection and other stressful conditions, may oppose this process and preserve variation. We tested this hypothesis by evolving Pseudomonas aeruginosa populations in biofilm-promoting arginine media for 3 months, using both a bead model of the biofilm life cycle and planktonic serial transfer. Surprisingly, adaptation and diversification were mostly uninterrupted by fixation events that eliminate diversity, with hundreds of mutations maintained at intermediate frequencies. The exceptions included genotypes with mutator alleles that also accelerated genetic diversification. Despite the rarity of hard sweeps, a remarkable 40 genes acquired parallel mutations in both treatments and often among competing genotypes within a population. These incomplete soft sweeps include several transporters (including pitA, pntB, nosD, and pchF) suggesting adaptation to the growth media that becomes highly alkaline during growth. Further, genes involved in signal transduction (including gacS, aer2, bdlA, and PA14_71750) reflect likely adaptations to biofilm-inducing conditions. Contrary to evolution experiments that select mutations in a few genes, these results suggest that some environments may expose a larger fraction of the genome and select for many adaptations at once. Thus, even growth on a sole carbon source can lead to persistent genetic and phenotypic variation despite strong selection that would normally purge diversity.
Collapse
Affiliation(s)
- Katrina B Harris
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth M Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|