1
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
2
|
Zhang X, Blaxter M, Wood JMD, Tracey A, McCarthy S, Thorpe P, Rayner JG, Zhang S, Sikkink KL, Balenger SL, Bailey NW. Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution. Nat Commun 2024; 15:5001. [PMID: 38866741 PMCID: PMC11169259 DOI: 10.1038/s41467-024-49344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, St Andrews, Fife, UK
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jack G Rayner
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Shangzhe Zhang
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Susan L Balenger
- College of Biological Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Vernier CL, Leitner N, Zelle KM, Foltz M, Dutton S, Liang X, Halloran S, Millar JG, Ben-Shahar Y. A pleiotropic chemoreceptor facilitates the production and perception of mating pheromones. iScience 2022; 26:105882. [PMID: 36691619 PMCID: PMC9860498 DOI: 10.1016/j.isci.2022.105882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, behavioral responses to, and the production of, a putative inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, through behavioral and pheromonal data, we found that Gr8a independently regulates the behavioral responses of males and females to a putative inhibitory pheromone, as well as its production in the fat body and oenocytes of males. Overall, these findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.
Collapse
Affiliation(s)
- Cassondra L. Vernier
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Nicole Leitner
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Kathleen M. Zelle
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Merrin Foltz
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Sophia Dutton
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Xitong Liang
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sean Halloran
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA,Corresponding author
| |
Collapse
|
4
|
White TE, Latty T, Umbers KDL. The exploitation of sexual signals by predators: a meta-analysis. Proc Biol Sci 2022; 289:20220444. [PMID: 35642366 PMCID: PMC9156902 DOI: 10.1098/rspb.2022.0444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sexual signals are often central to reproduction, and their expression is thought to strike a balance between advertising to mates and avoiding detection by predatory eavesdroppers. Tests of the predicted predation costs have produced mixed results, however. Here we synthesized 187 effects from 78 experimental studies in a meta-analytic test of two questions; namely, whether predators, parasites and parasitoids express preferences for the sexual signals of prey, and whether sexual signals increase realized predation risk in the wild. We found that predators and parasitoids express strong and consistent preferences for signals in forced-choice contexts. We found a similarly strong overall increase in predation on sexual signallers in the wild, though here it was modality specific. Olfactory and acoustic signals increased the incidence of eavesdropping relative to visual signals, which experienced no greater risk than controls on average. Variation in outcome measures was universally high, suggesting that contexts in which sexual signalling may incur no cost, or even reduce the incidence of predation, are common. Our results reveal unexpected complexity in a central viability cost to sexual signalling, while also speaking to applied problems in invasion biology and pest management where signal exploitation holds promise for bio-inspired solutions.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Tanya Latty
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Kate D. L. Umbers
- School of Science, Western Sydney University, Sydney, New South Wales 2751, Australia,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
5
|
Richardson J, Heinen-Kay JL, Zuk M. Sex-specific associations between life-history traits and a novel reproductive polymorphism in the Pacific field cricket. J Evol Biol 2021; 34:549-557. [PMID: 33484624 DOI: 10.1111/jeb.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Associations between heritable polymorphisms and life-history traits, such as development time or reproductive investment, may play an underappreciated role in maintaining polymorphic systems. This is because selection acting on a particular morph could be bolstered or disrupted by correlated changes in life history or vice versa. In a Hawaiian population of the Pacific field cricket (Teleogryllus oceanicus), a novel mutation (flatwing) on the X-chromosome is responsible for a heritable polymorphism in male wing structure. We used laboratory cricket colonies fixed for male wing morph to investigate whether males and females bearing the flatwing or normal-wing (wild-type) allele differed in their life-history traits. We found that flatwing males developed faster and had heavier testes than normal-wings, whereas flatwing homozygous females developed slower and had lighter reproductive tissues than normal-wing homozygous females. Our results advance our understanding of the evolution of polymorphisms by demonstrating that the genetic change responsible for a reproductive polymorphism can also have consequences for fundamental life-history traits in both males and females.
Collapse
Affiliation(s)
- Jon Richardson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Justa L Heinen-Kay
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|