1
|
Stone BW, Wessinger CA. Ecological Diversification in an Adaptive Radiation of Plants: The Role of De Novo Mutation and Introgression. Mol Biol Evol 2024; 41:msae007. [PMID: 38232726 PMCID: PMC10826641 DOI: 10.1093/molbev/msae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Adaptive radiations are characterized by rapid ecological diversification and speciation events, leading to fuzzy species boundaries between ecologically differentiated species. Adaptive radiations are therefore key systems for understanding how species are formed and maintained, including the role of de novo mutations versus preexisting variation in ecological adaptation and the genome-wide consequences of hybridization events. For example, adaptive introgression, where beneficial alleles are transferred between lineages through hybridization, may fuel diversification in adaptive radiations and facilitate adaptation to new environments. In this study, we employed whole-genome resequencing data to investigate the evolutionary origin of hummingbird-pollinated flowers and to characterize genome-wide patterns of phylogenetic discordance and introgression in Penstemon subgenus Dasanthera, a small and diverse adaptive radiation of plants. We found that magenta hummingbird-adapted flowers have apparently evolved twice from ancestral blue-violet bee-pollinated flowers within this radiation. These shifts in flower color are accompanied by a variety of inactivating mutations to a key anthocyanin pathway enzyme, suggesting that independent de novo loss-of-function mutations underlie the parallel evolution of this trait. Although patterns of introgression and phylogenetic discordance were heterogenous across the genome, a strong effect of gene density suggests that, in general, natural selection opposes introgression and maintains genetic differentiation in gene-rich genomic regions. Our results highlight the importance of both de novo mutation and introgression as sources of evolutionary change and indicate a role for de novo mutation in driving parallel evolution in adaptive radiations.
Collapse
Affiliation(s)
- Benjamin W Stone
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-3401, USA
| | - Carolyn A Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-3401, USA
| |
Collapse
|
2
|
Stone BW, Wessinger CA. Ecological diversification in an adaptive radiation of plants: the role of de novo mutation and introgression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565185. [PMID: 37961506 PMCID: PMC10635055 DOI: 10.1101/2023.11.01.565185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adaptive radiations are characterized by rapid ecological diversification and speciation events, leading to fuzzy species boundaries between ecologically differentiated species. Adaptive radiations are therefore key systems for understanding how species are formed and maintained, including the role of de novo mutations vs. pre-existing variation in ecological adaptation and the genome-wide consequences of hybridization events. For example, adaptive introgression, where beneficial alleles are transferred between lineages through hybridization, may fuel diversification in adaptive radiations and facilitate adaptation to new environments. In this study, we employed whole-genome resequencing data to investigate the evolutionary origin of hummingbird-pollinated flowers and to characterize genome-wide patterns of phylogenetic discordance and introgression in Penstemon subgenus Dasanthera, a small and diverse adaptive radiation of plants. We found that magenta hummingbird-adapted flowers have apparently evolved twice from ancestral blue-violet bee-pollinated flowers within this radiation. These shifts in flower color are accompanied by a variety of inactivating mutations to a key anthocyanin pathway enzyme, suggesting that independent de novo loss-of-function mutations underlie parallel evolution of this trait. Although patterns of introgression and phylogenetic discordance were heterogenous across the genome, a strong effect of gene density suggests that, in general, natural selection opposes introgression and maintains genetic differentiation in gene-rich genomic regions. Our results highlight the importance of both de novo mutation and introgression as sources of evolutionary change and indicate a role for de novo mutation in driving parallel evolution in adaptive radiations.
Collapse
Affiliation(s)
- Benjamin W. Stone
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-3401, USA
| | - Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-3401, USA
| |
Collapse
|
3
|
Flury JM, Meusemann K, Martin S, Hilgers L, Spanke T, Böhne A, Herder F, Mokodongan DF, Altmüller J, Wowor D, Misof B, Nolte AW, Schwarzer J. Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biol Evol 2023; 15:evad138. [PMID: 37493080 PMCID: PMC10465105 DOI: 10.1093/gbe/evad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Karen Meusemann
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Sebastian Martin
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Leon Hilgers
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Tobias Spanke
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Astrid Böhne
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Fabian Herder
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Bernhard Misof
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Arne W Nolte
- Department of Ecological Genomics, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| |
Collapse
|
4
|
Reid BN, Star B, Pinsky ML. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod ( Gadus morhua). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220190. [PMID: 37246382 DOI: 10.1098/rstb.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 05/30/2023] Open
Abstract
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Bastiaan Star
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| |
Collapse
|
5
|
Ferreira MS, Thurman TJ, Jones MR, Farelo L, Kumar AV, Mortimer SME, Demboski JR, Mills LS, Alves PC, Melo-Ferreira J, Good JM. The evolution of white-tailed jackrabbit camouflage in response to past and future seasonal climates. Science 2023; 379:1238-1242. [PMID: 36952420 DOI: 10.1126/science.ade3984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The genetic basis of adaptive traits has rarely been used to predict future vulnerability of populations to climate change. We show that light versus dark seasonal pelage in white-tailed jackrabbits (Lepus townsendii) tracks snow cover and is primarily determined by genetic variation at endothelin receptor type B (EDNRB), corin serine peptidase (CORIN), and agouti signaling protein (ASIP). Winter color variation was associated with deeply divergent alleles at these genes, reflecting selection on both ancestral and introgressed variation. Forecasted reductions in snow cover are likely to induce widespread camouflage mismatch. However, simulated populations with variation for darker winter pelage are predicted to adapt rapidly, providing a trait-based genetic framework to facilitate evolutionary rescue. These discoveries demonstrate how the genetic basis of climate change adaptation can inform conservation.
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Timothy J Thurman
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alexander V Kumar
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- US Fish and Wildlife Service, Fort Collins, CO, USA
| | | | - John R Demboski
- Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Office of Research and Creative Scholarship, University of Montana, Missoula, MT, USA
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| |
Collapse
|
6
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
7
|
McMahon O, Smyth T, Davies TW. Broad spectrum artificial light at night increases the conspicuousness of camouflaged prey. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Oak McMahon
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | - Tim Smyth
- Plymouth Marine Laboratory Plymouth UK
| | - Thomas W. Davies
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| |
Collapse
|
8
|
Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci Rep 2021; 11:15771. [PMID: 34349207 PMCID: PMC8338973 DOI: 10.1038/s41598-021-95357-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brown hares (Lepus europaeus Pallas) are able to hybridize with mountain hares (L. timidus Linnaeus) and produce fertile offspring, which results in cross-species gene flow. However, not much is known about the functional significance of this genetic introgression. Using targeted sequencing of candidate loci combined with mtDNA genotyping, we found the ancestral genetic diversity in the Finnish brown hare to be small, likely due to founder effect and range expansion, while gene flow from mountain hares constitutes an important source of functional genetic variability. Some of this variability, such as the alleles of the mountain hare thermogenin (uncoupling protein 1, UCP1), might have adaptive advantage for brown hares, whereas immunity-related MHC alleles are reciprocally exchanged and maintained via balancing selection. Our study offers a rare example where an expanding species can increase its allelic variability through hybridization with a congeneric native species, offering a route to shortcut evolutionary adaptation to the local environmental conditions.
Collapse
|
9
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
10
|
Miranda I, Giska I, Farelo L, Pimenta J, Zimova M, Bryk J, Dalén L, Mills LS, Zub K, Melo-Ferreira J. Museomics dissects the genetic basis for adaptive seasonal colouration in the least weasel. Mol Biol Evol 2021; 38:4388-4402. [PMID: 34157721 PMCID: PMC8476133 DOI: 10.1093/molbev/msab177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat colouration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage colour moults across regions with varying winter snow. Whole-genome sequence data was obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris colouration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200 kb genomic region to colouration morph, which was validated by genotyping museum specimens from inter-morph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change co-segregating with colouration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favoured winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter colour variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.
Collapse
Affiliation(s)
- Inês Miranda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| | - Iwona Giska
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - L Scott Mills
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.,Office of Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, Białowieża 17-230, Poland
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| |
Collapse
|
11
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Zimova M, Giery ST, Newey S, Nowak JJ, Spencer M, Mills LS. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc Biol Sci 2020; 287:20201786. [PMID: 33323093 PMCID: PMC7779512 DOI: 10.1098/rspb.2020.1786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding whether organisms will be able to adapt to human-induced stressors currently endangering their existence is an urgent priority. Globally, multiple species moult from a dark summer to white winter coat to maintain camouflage against snowy landscapes. Decreasing snow cover duration owing to climate change is increasing mismatch in seasonal camouflage. To directly test for adaptive responses to recent changes in snow cover, we repeated historical (1950s) field studies of moult phenology in mountain hares (Lepus timidus) in Scotland. We found little evidence that population moult phenology has shifted to align seasonal coat colour with shorter snow seasons, or that phenotypic plasticity prevented increases in camouflage mismatch. The lack of responses resulted in 35 additional days of mismatch between 1950 and 2016. We emphasize the potential role of weak directional selection pressure and low genetic variability in shaping the scope for adaptive responses to anthropogenic stressors.
Collapse
Affiliation(s)
- Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48104, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Sean T. Giery
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Scott Newey
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - J. Joshua Nowak
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Michael Spencer
- Scotland's Rural College, King's Buildings, Edinburgh EH9 3JG, UK
| | - L. Scott Mills
- Wildlife Biology Program and Office of Research and Creative Scholarship, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
13
|
Kumar AV, Zimova M, Sparks JR, Mills LS. Snow-mediated plasticity does not prevent camouflage mismatch. Oecologia 2020; 194:301-310. [PMID: 32583125 PMCID: PMC7644448 DOI: 10.1007/s00442-020-04680-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Global reduction in snow cover duration is one of the most consistent and widespread climate change outcomes. Declining snow duration has severe negative consequences for diverse taxa including seasonally color molting species, which rely on snow for camouflage. However, phenotypic plasticity may facilitate adaptation to reduced snow duration. Plastic responses could occur in the color molt phenology or through behavior that minimizes coat color mismatch or its consequences. We quantified molt phenology of 200 wild snowshoe hares (Lepus americanus), and measured microhabitat choice and local snow cover. Similar to other studies, we found that hares did not show behavioral plasticity to minimize coat color mismatch via background matching; instead they preferred colder, snow free areas regardless of their coat color. Furthermore, hares did not behaviorally mitigate the negative consequences of mismatch by choosing resting sites with denser vegetation cover when mismatched. Importantly, we demonstrated plasticity in the initiation and the rate of the molt and established the direct effect of snow on molt phenology; greater snow cover was associated with whiter hares and this association was not due to whiter hares preferring snowier areas. However, despite the observed snow-mediated plasticity in molt phenology, camouflage mismatch with white hares on brown snowless ground persisted and was more frequent during early snowmelt. Thus, we find no evidence that phenotypic plasticity in snowshoe hares is sufficient to facilitate adaptive rescue to camouflage mismatch under climate change.
Collapse
Affiliation(s)
- Alexander V Kumar
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.
- Department of Forestry and Environmental Resources, Program in Fisheries, Wildlife and Conservation Biology, North Carolina State University, Raleigh, NC, 27695-7617, USA.
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 49109, USA
| | - James R Sparks
- Missoula Field Office, Bureau of Land Management, Missoula, MT, 59804, USA
| | - L Scott Mills
- Department of Forestry and Environmental Resources, Program in Fisheries, Wildlife and Conservation Biology, North Carolina State University, Raleigh, NC, 27695-7617, USA
- Wildlife Biology Program and Office of the Vice President for Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
14
|
Ottenburghs J. Digest: How the snowshoe hare got its brown coat: Convergent evolution or gene flow? Evolution 2020; 74:2174-2175. [PMID: 32686141 DOI: 10.1111/evo.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
The winter-brown phenotype of snowshoe hares in the Pacific Northwest was acquired through hybridization with black-tailed jackrabbits. Some snowshoe hares in more northern boreal populations exhibit the same phenotype, but how did they acquire it? Jones and colleagues show that the phenotype in the boreal populations is the outcome of convergent evolution, highlighting the importance of understanding the genetic basis of a trait in reconstructing its evolution.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and Conservation, Wageningen University & Research, Wageningen, The Netherlands.,Forest Ecology and Forest Management, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Colella JP, Tigano A, MacManes MD. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues. Mol Ecol Resour 2020; 20:856-870. [PMID: 32153100 PMCID: PMC7496956 DOI: 10.1111/1755-0998.13155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
High-throughput sequencing technologies are a proposed solution for accessing the molecular data in historical specimens. However, degraded DNA combined with the computational demands of short-read assemblies has posed significant laboratory and bioinformatics challenges for de novo genome assembly. Linked-read or "synthetic long-read" sequencing technologies, such as 10× Genomics, may provide a cost-effective alternative solution to assemble higher quality de novo genomes from degraded tissue samples. Here, we compare assembly quality (e.g., genome contiguity and completeness, presence of orthogroups) between four new deer mouse (Peromyscus spp.) genomes assembled using linked-read technology and four published genomes assembled from a single shotgun library. At a similar price-point, these approaches produce vastly different assemblies, with linked-read assemblies having overall higher contiguity and completeness, measured by larger N50 values and greater number of genes assembled, respectively. As a proof-of-concept, we used annotated genes from the four Peromyscus linked-read assemblies and eight additional rodent taxa to generate a phylogeny, which reconstructed the expected relationships among species with 100% support. Although not without caveats, our results suggest that linked-read sequencing approaches are a viable option to build de novo genomes from degraded tissues, which may prove particularly valuable for taxa that are extinct, rare or difficult to collect.
Collapse
Affiliation(s)
- Jocelyn P. Colella
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNHUSA
| | - Anna Tigano
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNHUSA
| | - Matthew D. MacManes
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNHUSA
| |
Collapse
|