1
|
Roberts NS, Svensson EI, Liénard MA. Opsin gene expression plasticity and spectral sensitivity in male damselflies could mediate female colour morph detection. Proc Biol Sci 2025; 292:20242511. [PMID: 40393486 DOI: 10.1098/rspb.2024.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025] Open
Abstract
The visual systems of Odonata are characterized by many opsin genes, which form the primary light-sensitive photopigments of the eye. Female-limited colour polymorphisms are also common in Odonata, with one morph typically exhibiting male-like (androchrome) coloration and one or two morphs exhibiting female-specific coloration (gynochromes). These colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, in which males form search images for certain morphs, causing disproportionate mating harassment. Here, we investigate opsin sensitivity and gene expression plasticity in mate-searching males of the damselfly Ischnura elegans during adult maturation and across populations with different female morph frequencies. We find evidence for opsin-specific plasticity in relative and proportional opsin mRNA expression, suggesting changes in opsin regulation and visual sensitivity during sexual maturation. In particular, expression of the long-wavelength-sensitive opsin LWF2 changed over development and varied between populations with different female morph frequencies. UV-Vis analyses indicate that short- and long-wavelength opsins absorb wavelengths of light between 350 and 650 nm. Assuming opponency between photoreceptors with distinct short- and long-wavelength sensitivities, these sensitivities suggest male spectral visual discrimination ability of androchrome and gynochrome females. Overall, our results suggest that opsin sensitivity and expression changes contribute to visual tuning that could impact conspecific discrimination.
Collapse
|
2
|
Goerge TM, Miles DB. Territorial status is explained by covariation between boldness, exploration, and thermal preference in a colour polymorphic lizard. Ecol Evol 2024; 14:e70321. [PMID: 39355115 PMCID: PMC11442181 DOI: 10.1002/ece3.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Colour polymorphic species often exhibit variation in morphology, physiology, and behaviour among morphs. In particular, dominance status may be signalled by the interaction between behaviour and colour morph. Behavioural traits associated with dominance include boldness, exploration, and aggression, which influence access to preferred habitat, territorial defence, and mate acquisition. In ectotherms, the social structure associated with morphs may result in the exploitation of structural niches differing in thermal quality. Hence, social interactions among morphs may generate concordant variation in thermal preference and environmental temperature. However, few studies have assessed thermal preference variation in colour polymorphic species and its covariation with behaviour. Doing so can provide insight into niche specialization and the maintenance of colour polymorphism in populations. Here, we investigated the patterns of covariation in boldness behaviour, exploratory behaviour, and thermal preference in the tree lizard, Urosaurus ornatus. We assessed trait variation between territorial and non-territorial male morphs and between orange and yellow female morphs. Boldness and exploratory behaviour were repeatable in male U. ornatus and bolder individuals were significantly more likely to incur tail loss, a potential consequence of bold behaviour. Territorial male morphs were significantly bolder and more exploratory and preferred higher body temperatures with a narrower T set than non-territorial morphs. Female morphs did not vary in behavioural or thermal traits. This study highlights behavioural mechanisms that underly ecological niche segregation and variable habitat use between morphs in a colour polymorphic species.
Collapse
Affiliation(s)
- Tyler M. Goerge
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Donald B. Miles
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| |
Collapse
|
3
|
Harry ND, Zakas C. The role of heterochronic gene expression and regulatory architecture in early developmental divergence. eLife 2024; 13:RP93062. [PMID: 39177024 PMCID: PMC11343563 DOI: 10.7554/elife.93062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring - using reciprocal crosses - to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| |
Collapse
|
4
|
Willink B, Tunström K, Nilén S, Chikhi R, Lemane T, Takahashi M, Takahashi Y, Svensson EI, Wheat CW. The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies. Nat Ecol Evol 2024; 8:83-97. [PMID: 37932383 PMCID: PMC10781644 DOI: 10.1038/s41559-023-02243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Rayan Chikhi
- Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Téo Lemane
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
5
|
Price BW, Winter M, Brooks SJ, Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the blue-tailed damselfly, Ischnura elegans (Vander Linden, 1820). Wellcome Open Res 2022; 7:66. [PMID: 36874565 PMCID: PMC9975421 DOI: 10.12688/wellcomeopenres.17691.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual female Ischnura elegans (the blue-tailed damselfly; Arthropoda; Insecta; Odonata; Coenagrionidae). The genome sequence is 1,723 megabases in span. The majority of the assembly (99.55%) is scaffolded into 14 chromosomal pseudomolecules, with the X sex chromosome assembled.
Collapse
|
6
|
Heinen‐Kay JL, Kay AD, Zuk M. How urbanization affects sexual communication. Ecol Evol 2021; 11:17625-17650. [PMID: 35003629 PMCID: PMC8717295 DOI: 10.1002/ece3.8328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Urbanization is rapidly altering landscapes worldwide, changing environmental conditions, and creating novel selection pressures for many organisms. Local environmental conditions affect the expression and evolution of sexual signals and mating behaviors; changes in such traits have important evolutionary consequences because of their effect on reproduction. In this review, we synthesize research investigating how sexual communication is affected by the environmental changes associated with urbanization-including pollution from noise, light, and heavy metals, habitat fragmentation, impervious surfaces, urban heat islands, and changes in resources and predation. Urbanization often has negative effects on sexual communication through signal masking, altering condition-dependent signal expression, and weakening female preferences. Though there are documented instances of seemingly adaptive shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of urban evolution is still relatively young, and most work has tested whether differences occur in response to various aspects of urbanization. There is limited information available about whether these responses represent phenotypic plasticity or genetic changes, and the extent to which observed shifts in sexual communication affect reproductive fitness. Our understanding of how sexual selection operates in novel, urbanized environments would be bolstered by more studies that perform common garden studies and reciprocal transplants, and that simultaneously evaluate multiple environmental factors to tease out causal drivers of observed phenotypic shifts. Urbanization provides a unique testing ground for evolutionary biologists to study the interplay between ecology and sexual selection, and we suggest that more researchers take advantage of these natural experiments. Furthermore, understanding how sexual communication and mating systems differ between cities and rural areas can offer insights on how to mitigate negative, and accentuate positive, consequences of urban expansion on the biota, and provide new opportunities to underscore the relevance of evolutionary biology in the Anthropocene.
Collapse
Affiliation(s)
- Justa L. Heinen‐Kay
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| | - Adam D. Kay
- Biology DepartmentUniversity of St. ThomasSt. PaulUSA
| | - Marlene Zuk
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| |
Collapse
|
7
|
Takahashi M, Okude G, Futahashi R, Takahashi Y, Kawata M. The effect of the doublesex gene in body colour masculinization of the damselfly Ischnura senegalensis. Biol Lett 2021; 17:20200761. [PMID: 34102071 PMCID: PMC8187028 DOI: 10.1098/rsbl.2020.0761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata.
Collapse
Affiliation(s)
- Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuma Takahashi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
8
|
A molecularphylogeny offorktail damselflies(genus Ischnura)revealsa dynamic macroevolutionary history of female colour polymorphisms. Mol Phylogenet Evol 2021; 160:107134. [PMID: 33677008 DOI: 10.1016/j.ympev.2021.107134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Colour polymorphisms are popular study systems among biologists interested in evolutionary dynamics, genomics, sexual selection and sexual conflict. In many damselfly groups, such as in the globally distributed genus Ischnura (forktails), sex-limited female colour polymorphisms occur in multiple species. Female-polymorphic species contain two or three female morphs, one of which phenotypically matches the male (androchrome or male mimic) and the other(s) which are phenotypically distinct from the male (heterochrome). These female colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, but their macroevolutionary histories are unknown, due to the lack of a robust molecular phylogeny. Here, we present the first time-calibrated phylogeny of Ischnura, using a multispecies coalescent approach (StarBEAST2) and incorporating both molecular and fossil data for 41 extant species (55% of the genus). We estimate the age of Ischnura to be between 13.8 and 23.4 millions of years, i.e. Miocene. We infer the ancestral state of this genus as female monomorphism with heterochrome females, with multiple gains and losses of female polymorphisms, evidence of trans-species female polymorphisms and a significant positive relationship between female polymorphism incidence and current geographic range size. Our study provides a robust phylogenetic framework for future research on the dynamic macroevolutionary history of this clade with its extraordinary diversity of sex-limited female polymorphisms.
Collapse
|
9
|
Okude G, Futahashi R. Pigmentation and color pattern diversity in Odonata. Curr Opin Genet Dev 2021; 69:14-20. [PMID: 33482606 DOI: 10.1016/j.gde.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The order Odonata (dragonflies and damselflies) comprises diurnal insects with well-developed vision, showing diverse colors in adult wings and bodies. It is one of the most ancestral winged insect groups. Because Odonata species use visual cues to recognize each other, color patterns have been investigated from ecological and evolutionary viewpoints. Here we review the recent progress on molecular mechanisms of pigmentation, especially focused on light-blue coloration. Results from histology and pigment analysis showed that ommochrome pigments on the proximal layer and pteridine pigments on the distal layer of the epidermis are essential for light-blue coloration. We also summarize genes involved in the biosynthesis of three major insect pigments conserved across insects and discuss that gene-functional analysis deserves future studies.
Collapse
Affiliation(s)
- Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|