1
|
Yan L, Jiang X, Zhang Y, Dong Y, Zhao C, Xu K, Huo Z, Wang W. Induction of Salt Stress Tolerance in Wheat Seeds by Parental Treatment with Salicylic Acid. PLANTS (BASEL, SWITZERLAND) 2024; 13:3373. [PMID: 39683166 DOI: 10.3390/plants13233373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is an important factor that limits crop production. The effects of spraying salicylic acid (SA) during the grain-filling stage on the salt tolerance of progeny seeds in wheat (Triticum aestivum L.) were investigated in this study. The results showed that spraying SA during the grain-filling stage significantly increased the grain weight and yield of wheat plants. Meanwhile, the seeds from the SA-treated plants showed a higher germination rate, length and dry mass of the coleoptile and radicle, and a lower mean germination time compared to the seeds of water-treated plants under the salt germination condition, indicating that SA pretreatment during the grain-filling stage could effectively improve the salt tolerance of progeny seeds in wheat. SA pretreatment significantly increased the activities of amylases and the respiration rate, accompanied by a decrease in starch content, and a higher accumulation in the level of soluble sugars and adenosine triphosphate (ATP) in the germinated seedlings compared to the water pretreatment under salt stress. In addition, SA pretreatment obviously alleviated the increase in malondialdehyde (MDA) content and the reactive oxygen species (ROS) release rate in seedlings by activating antioxidant enzymes (superoxide dismutase (SOD) and peroxidase (POD)) under salt stress. Moreover, the seedlings of the SA-treated plants showed lower Na+ and higher K+ contents compared to the seeds of water-treated plants under salt stress. The results of this study indicate that spraying SA during the grain-filling stage improves the capacity of offspring seeds to maintain osmotic and ion balance and redox homeostasis under salt stress, thereby conferring salt tolerance to the wheat seeds.
Collapse
Affiliation(s)
- Lei Yan
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Xue Jiang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Yuman Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Yongwen Dong
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Can Zhao
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| |
Collapse
|
2
|
Mei J, Che J, Shi Y, Fang Y, Wu R, Zhu X. Mapping the Influence of Light Intensity on the Transgenerational Genetic Architecture of Arabidopsis thaliana. Curr Issues Mol Biol 2024; 46:8148-8169. [PMID: 39194699 DOI: 10.3390/cimb46080482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Light is a crucial environmental factor that influences the phenotypic development of plants. Despite extensive studies on the physiological, biochemical, and molecular mechanisms of the impact of light on phenotypes, genetic investigations regarding light-induced transgenerational plasticity in Arabidopsis thaliana remain incomplete. In this study, we used thaliana as the material, then gathered phenotypic data regarding leaf number and plant height under high- and low-light conditions from two generations. In addition to the developed genotype data, a functional mapping model was used to locate a series of significant single-nucleotide polymorphisms (SNPs). Under low-light conditions, a noticeable adaptive change in the phenotype of leaf number in the second generation suggests the presence of transgenerational genetic effects in thaliana under environmental stress. Under different lighting treatments, 33 and 13 significant genes associated with transgenerational inheritance were identified, respectively. These genes are largely involved in signal transduction, technical hormone pathways, light responses, and the regulation of organ development. Notably, genes identified under high-light conditions more significantly influence plant development, whereas those identified under low-light conditions focus more on responding to external environmental stimuli.
Collapse
Affiliation(s)
- Jie Mei
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jincan Che
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunzhu Shi
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yudian Fang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|