1
|
Guay SY, Patel PH, Thomalla JM, McDermott KL, O'Toole JM, Arnold SE, Obrycki SJ, Wolfner MF, Findlay GD. An orphan gene is essential for efficient sperm entry into eggs in Drosophila melanogaster. Genetics 2025; 229:iyaf008. [PMID: 39903197 DOI: 10.1093/genetics/iyaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor. It is unclear whether its role in fertility had already evolved at that time or developed later in the lineage leading to D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila.
Collapse
Affiliation(s)
- Sara Y Guay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Prajal H Patel
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Kerry L McDermott
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Jillian M O'Toole
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Sarah E Arnold
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Sarah J Obrycki
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| |
Collapse
|
2
|
Ahmed KA, Yeap HL, Coppin CW, Liu JW, Pandey G, Taylor PW, Lee SF, Oakeshott JG. Seminal fluid proteins in the Queensland fruit fly: Tissue origins, effects of mating and comparative genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104247. [PMID: 39667437 DOI: 10.1016/j.ibmb.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In many insect species, the ability of males to inhibit their mates from remating is an important component of fitness. This ability is also essential for the effective management of insect pests, including tephritid fruit flies, using the Sterile Insect Technique. Here we apply transcriptomics and proteomics to male reproductive tissues before and after mating to characterize components of semen that might mediate remating inhibition in Queensland fruit fly. We found 144 genes whose transcripts were enriched, or proteins expressed, in reproductive tissue and which also varied in amount after mating. Some were associated with testes, accessory glands and ejaculatory apodeme, but those from the ejaculatory apodeme were over-represented compared to those not enriched in reproductive tissue or mating responsive. These included 13 related genes clustered within one Mb on chromosome 5. Functional annotations implicated a broad range of biochemical processes in the genes/proteins enriched in reproductive tissue and mating responsive, with cuticle structure most commonly implicated among the subset of these that were apodeme-enriched and a kinase involved in vitellogenesis implicated for one of the 13 clustered genes. We did not find a homolog of the much studied Drosophila melanogaster Sex Peptide but comparative genomics indicated that some of the tissue-enriched, mating responsive genes/proteins were rapidly evolving in tephritids (including in the Queensland fruit fly lineage), suggesting recent adaptation to new functional niches. Our results provide a set of candidate mediators of remating inhibition for further functional testing.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Australian Animal Health Laboratory (AAHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC, 3220, Australia.
| | - Heng Lin Yeap
- CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Health and Biosecurity, Parkville, VIC, 3052, Australia
| | | | - Jian-Wei Liu
- CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | | | - Siu Fai Lee
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
3
|
Kopania EEK, Thomas GWC, Hutter CR, Mortimer SME, Callahan CM, Roycroft E, Achmadi AS, Breed WG, Clark NL, Esselstyn JA, Rowe KC, Good JM. Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents. Evolution 2024; 79:11-27. [PMID: 39392918 DOI: 10.1093/evolut/qpae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass (RTM), presumably reflecting reduced sperm competition. Several sperm traits were associated with RTM, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller RTM due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Informatics Group, Harvard University, Cambridge, MA, USA
| | - Carl R Hutter
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Emily Roycroft
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Sciences, Museums Victoria Research Institute, Melbourne, VIC, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Indonesia
| | - William G Breed
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Sciences, Museums Victoria Research Institute, Melbourne, VIC, Australia
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
4
|
Guay SY, Patel PH, Thomalla JM, McDermott KL, O'Toole JM, Arnold SE, Obrycki SJ, Wolfner MF, Findlay GD. An orphan gene is essential for efficient sperm entry into eggs in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607187. [PMID: 39149251 PMCID: PMC11326263 DOI: 10.1101/2024.08.08.607187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor and subsequently evolved an essential role in fertility in D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila.
Collapse
Affiliation(s)
- Sara Y Guay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Prajal H Patel
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Kerry L McDermott
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Jillian M O'Toole
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Sarah E Arnold
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Sarah J Obrycki
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
5
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
6
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
7
|
Papachristos K, Sayadi A, Arnqvist G. Comparative Genomic Analysis of the Pattern of Evolution of Male and Female Reproductive Proteins in Seed Beetles. Genome Biol Evol 2024; 16:evae143. [PMID: 38941482 PMCID: PMC11251426 DOI: 10.1093/gbe/evae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Male seminal fluid proteins often show signs of positive selection and divergent evolution, believed to reflect male-female coevolution. Yet, our understanding of the predicted concerted evolution of seminal fluid proteins and female reproductive proteins is limited. We sequenced, assembled, and annotated the genome of two species of seed beetles allowing a comparative analysis of four closely related species of these herbivorous insects. We compare the general pattern of evolution in genes encoding seminal fluid proteins and female reproductive proteins with those in digestive protein genes and well-conserved reference genes. We found that female reproductive proteins showed an overall ratio of nonsynonymous to synonymous substitutions (ω) similar to that of conserved genes, while seminal fluid proteins and digestive proteins exhibited higher overall ω values. Further, seminal fluid proteins and digestive proteins showed a higher proportion of sites putatively under positive selection, and explicit tests showed no difference in relaxed selection between protein types. Evolutionary rate covariation analyses showed that evolutionary rates among seminal fluid proteins were on average more closely correlated with those in female reproductive proteins than with either digestive or conserved genes. Gene expression showed the expected negative covariation with ω values, except for male-biased genes where this negative relationship was reversed. In conclusion, seminal fluid proteins showed relatively rapid evolution and signs of positive selection. In contrast, female reproductive proteins evolved at a lower rate under selective constraints, on par with genes known to be well conserved. Although our findings provide support for concerted evolution of seminal fluid proteins and female reproductive proteins, they also suggest that these two classes of proteins evolve under partly distinct selective regimes.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Majane AC, Cridland JM, Blair LK, Begun DJ. Evolution and genetics of accessory gland transcriptome divergence between Drosophila melanogaster and D. simulans. Genetics 2024; 227:iyae039. [PMID: 38518250 PMCID: PMC11151936 DOI: 10.1093/genetics/iyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Logan K Blair
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Scott MF, Mackintosh C, Immler S. Gametic selection favours polyandry and selfing. PLoS Genet 2024; 20:e1010660. [PMID: 38363804 PMCID: PMC10903963 DOI: 10.1371/journal.pgen.1010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/29/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Competition among pollen or sperm (gametic selection) can cause evolution. Mating systems shape the intensity of gametic selection by determining the competitors involved, which can in turn cause the mating system itself to evolve. We model the bidirectional relationship between gametic selection and mating systems, focusing on variation in female mating frequency (monandry-polyandry) and self-fertilisation (selfing-outcrossing). First, we find that monandry and selfing both reduce the efficiency of gametic selection in removing deleterious alleles. This means that selfing can increase mutation load, in contrast to cases without gametic selection where selfing purges deleterious mutations and decreases mutation load. Second, we explore how mating systems evolve via their effect on gametic selection. By manipulating gametic selection, polyandry can evolve to increase the fitness of the offspring produced. However, this indirect advantage of post-copulatory sexual selection is weak and is likely to be overwhelmed by any direct fitness effects of mating systems. Nevertheless, gametic selection can be potentially decisive for selfing evolution because it significantly reduces inbreeding depression, which favours selfing. Thus, the presence of gametic selection could be a key factor driving selfing evolution.
Collapse
Affiliation(s)
- Michael Francis Scott
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Carl Mackintosh
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff, France
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
10
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
11
|
Zwonitzer KD, Iverson ENK, Sterling JE, Weaver RJ, Maclaine BA, Havird JC. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes. Am Nat 2023; 202:E121-E129. [PMID: 37792916 PMCID: PMC10955554 DOI: 10.1086/725805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated dN/dS ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated dN/dS ratios, but tests to distinguish these two causes are seldomly implemented. Here, we reevaluated seven case studies describing elevated dN/dS ratios in animal mitochondrial DNA (mtDNA) and their accompanying hypotheses regarding selection. They included flightless lineages versus flighted lineages in birds, bats, and insects and physiological adaptations in snakes, two groups of electric fishes, and primates. We found that elevated dN/dS ratios were often not caused by the predicted mechanism, and we sometimes found strong support for the opposite mechanism. We discuss reasons why energetic hypotheses may be confounded by other selective forces acting on mtDNA and caution against overinterpreting singular molecular signals, including elevated dN/dS ratios.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Erik N. K. Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jess E. Sterling
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Ryan J. Weaver
- Department of Ecology, Evolution, and Organismal Biology and Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa 50011
| | - Bradley A. Maclaine
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Justin C. Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
12
|
Patlar B, Fulham L, Civetta A. A predominant role of genotypic variation in both expression of sperm competition genes and paternity success in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231715. [PMID: 37727083 PMCID: PMC10509582 DOI: 10.1098/rspb.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Sperm competition is a crucial aspect of male reproductive success in many species, including Drosophila melanogaster, and seminal fluid proteins (Sfps) can influence sperm competitiveness. However, the combined effect of environmental and genotypic variation on sperm competition gene expression remains poorly understood. Here, we used Drosophila Genetic Reference Panel (DGRP) inbred lines and manipulated developmental population density (i.e. larval density) to test the effects of genotype, environment and genotype-by-environment interactions (GEI) on the expression of the known sperm competition genes Sex Peptide, Acp36DE and CG9997. High larval density resulted in reduced adult body size, but expression of sperm competition genes remained unaffected. Furthermore, we found no significant GEI but genotypic effects in the expression of SP and Acp36DE. Our results also revealed GEI for relative competitive paternity success (second male paternity; P2), with genes' expression positively correlated with P2. Given the effect of genotype on the expression of genes, we conducted a genome-wide association study (GWAS) and identified polymorphisms in putative cis-regulatory elements as predominant factors regulating the expression of SP and Acp36DE. The association of genotypic variation with sperm competition outcomes, and the resilience of sperm competition genes' expression against environmental challenges, demonstrates the importance of genome variation background in reproductive fitness.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Lauren Fulham
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| |
Collapse
|
13
|
Zeender V, Pfammatter S, Roschitzki B, Dorus S, Lüpold S. Genotype-by-environment interactions influence the composition of the Drosophila seminal proteome. Proc Biol Sci 2023; 290:20231313. [PMID: 37700651 PMCID: PMC10498039 DOI: 10.1098/rspb.2023.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.
Collapse
Affiliation(s)
- Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Everitt T, Wallberg A, Christmas MJ, Olsson A, Hoffmann W, Neumann P, Webster MT. The Genomic Basis of Adaptation to High Elevations in Africanized Honey Bees. Genome Biol Evol 2023; 15:evad157. [PMID: 37625795 PMCID: PMC10484329 DOI: 10.1093/gbe/evad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.
Collapse
Affiliation(s)
- Turid Everitt
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hoffmann
- Grupo de Biocalorimetría, Universidad de Pamplona, Pamplona, Colombia
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Matthew T Webster
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Garlovsky MD, Ahmed-Braimah YH. Evolutionary Quantitative Proteomics of Reproductive Protein Divergence in Drosophila. Mol Cell Proteomics 2023; 22:100610. [PMID: 37391044 PMCID: PMC10407754 DOI: 10.1016/j.mcpro.2023.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2023] [Accepted: 06/04/2023] [Indexed: 07/02/2023] Open
Abstract
Reproductive traits often evolve rapidly between species. Understanding the causes and consequences of this rapid divergence requires characterization of female and male reproductive proteins and their effect on fertilization success. Species in the Drosophila virilis clade exhibit rampant interspecific reproductive incompatibilities, making them ideal for studies on diversification of reproductive proteins and their role in speciation. Importantly, the role of intraejaculate protein abundance and allocation in interspecific divergence is poorly understood. Here, we identify and quantify the transferred male ejaculate proteome using multiplexed isobaric labeling of the lower female reproductive tract before and immediately after mating using three species of the virilis group. We identified over 200 putative male ejaculate proteins, many of which show differential abundance between species, suggesting that males transfer a species-specific allocation of seminal fluid proteins during copulation. We also identified over 2000 female reproductive proteins, which contain female-specific serine-type endopeptidases that showed differential abundance between species and elevated rates of molecular evolution, similar to that of some male seminal fluid proteins. Our findings suggest that reproductive protein divergence can also manifest in terms of species-specific protein abundance patterns.
Collapse
|
16
|
Tosto NM, Beasley ER, Wong BBM, Mank JE, Flanagan SP. The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat Ecol Evol 2023; 7:981-993. [PMID: 36959239 DOI: 10.1038/s41559-023-02019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Sexual dimorphism is one of the most prevalent, and often the most extreme, examples of phenotypic variation within species, and arises primarily from genomic variation that is shared between females and males. Many sexual dimorphisms arise through sex differences in gene expression, and sex-biased expression is one way that a single, shared genome can generate multiple, distinct phenotypes. Although many sexual dimorphisms are expected to result from sexual selection, and many studies have invoked the possible role of sexual selection to explain sex-specific traits, the role of sexual selection in the evolution of sexually dimorphic gene expression remains difficult to differentiate from other forms of sex-specific selection. In this Review, we propose a holistic framework for the study of sex-specific selection and transcriptome evolution. We advocate for a comparative approach, across tissues, developmental stages and species, which incorporates an understanding of the molecular mechanisms, including genomic variation and structure, governing gene expression. Such an approach is expected to yield substantial insights into the evolution of genetic variation and have important applications in a variety of fields, including ecology, evolution and behaviour.
Collapse
Affiliation(s)
- Nicole M Tosto
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily R Beasley
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
17
|
McQuarrie DWJ, Read AM, Stephens FHS, Civetta A, Soller M. Indel driven rapid evolution of core nuclear pore protein gene promoters. Sci Rep 2023; 13:8035. [PMID: 37198214 DOI: 10.1038/s41598-023-34985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam M Read
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Frannie H S Stephens
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Walter M, Puniamoorthy N. Discovering novel reproductive genes in a non-model fly using de novo GridION transcriptomics. Front Genet 2022; 13:1003771. [PMID: 36568389 PMCID: PMC9768217 DOI: 10.3389/fgene.2022.1003771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Gene discovery has important implications for investigating phenotypic trait evolution, adaptation, and speciation. Male reproductive tissues, such as accessory glands (AGs), are hotspots for recruitment of novel genes that diverge rapidly even among closely related species/populations. These genes synthesize seminal fluid proteins that often affect post-copulatory sexual selection-they can mediate male-male sperm competition, ejaculate-female interactions that modify female remating and even influence reproductive incompatibilities among diverging species/populations. Although de novo transcriptomics has facilitated gene discovery in non-model organisms, reproductive gene discovery is still challenging without a reference database as they are often novel and bear no homology to known proteins. Here, we use reference-free GridION long-read transcriptomics, from Oxford Nanopore Technologies (ONT), to discover novel AG genes and characterize their expression in the widespread dung fly, Sepsis punctum. Despite stark population differences in male reproductive traits (e.g.: Body size, testes size, and sperm length) as well as female re-mating, the male AG genes and their secretions of S. punctum are still unknown. We implement a de novo ONT transcriptome pipeline incorporating quality-filtering and rigorous error-correction procedures, and we evaluate gene sequence and gene expression results against high-quality Illumina short-read data. We discover highly-expressed reproductive genes in AG transcriptomes of S. punctum consisting of 40 high-quality and high-confidence ONT genes that cross-verify against Illumina genes, among which 26 are novel and specific to S. punctum. Novel genes account for an average of 81% of total gene expression and may be functionally relevant in seminal fluid protein production. For instance, 80% of genes encoding secretory proteins account for 74% total gene expression. In addition, median sequence similarities of ONT nucleotide and protein sequences match within-Illumina sequence similarities. Read-count based expression quantification in ONT is congruent with Illumina's Transcript per Million (TPM), both in overall pattern and within functional categories. Rapid genomic innovation followed by recruitment of de novo genes for high expression in S. punctum AG tissue, a pattern observed in other insects, could be a likely mechanism of evolution of these genes. The study also demonstrates the feasibility of adapting ONT transcriptomics for gene discovery in non-model systems.
Collapse
|
20
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|
21
|
Wigby S, Brown NC, Sepil I, Wolfner MF. On how to identify a seminal fluid protein: A commentary on Hurtado et al. INSECT MOLECULAR BIOLOGY 2022; 31:533-536. [PMID: 35975871 PMCID: PMC9452446 DOI: 10.1111/imb.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Seminal fluid proteins (Sfps) have striking effects on the behaviour and physiology of females in many insects. Some Drosophila melanogaster Sfps are not highly or exclusively expressed in the accessory glands, but derive from, or are additionally expressed in other male reproductive tissues. The full suite of Sfps includes transferred proteins from all male reproductive tissues, regardless of expression level or presence of a signal peptide.
Collapse
Affiliation(s)
- Stuart Wigby
- Department of Ecology Evolution and Behaviour, Institute
of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool
L69 7ZB, UK
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1
3PS, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, USA
| |
Collapse
|
22
|
Functional Diversity and Evolution of the Drosophila Sperm Proteome. Mol Cell Proteomics 2022; 21:100281. [PMID: 35985624 PMCID: PMC9494239 DOI: 10.1016/j.mcpro.2022.100281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Spermatozoa are central to fertilization and the evolutionary fitness of sexually reproducing organisms. As such, a deeper understanding of sperm proteomes (and associated reproductive tissues) has proven critical to the advancement of the fields of sexual selection and reproductive biology. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here, we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins, and we provide the first label-free quantitation of the sperm proteome for 2125 proteins. The top 20 most abundant proteins included the structural elements α- and β-tubulins and sperm leucyl-aminopeptidases. Both gene content and protein abundance were significantly reduced on the X chromosome, consistent with prior genomic studies of X chromosome evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. We also identified almost one-half of known Drosophila ribosomal proteins in the DmSP3. The role of this subset of ribosomal proteins in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins originally identified in the accessory glands. We show that a significant fraction of 'sperm-associated Sfps' are recalcitrant to concentrated salt and detergent treatments, suggesting this subclass of Sfps are expressed in testes and may have additional functions in sperm, per se. Overall, our results add to a growing landscape of both sperm and seminal fluid protein biology and in particular provides quantitative evidence at the protein level for prior findings supporting the meiotic sex-chromosome inactivation model for male-specific gene and X chromosome evolution.
Collapse
|
23
|
Hurtado J, Almeida FC, Belliard SA, Revale S, Hasson E. Research gaps and new insights in the evolution of Drosophila seminal fluid proteins. INSECT MOLECULAR BIOLOGY 2022; 31:139-158. [PMID: 34747062 DOI: 10.1111/imb.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model Drosophila melanogaster. Here, we provide an overview of the current knowledge on the inter-specific divergence of the SFP repertoire in Drosophila and compile the increasing amount of relevant genomic information from multiple species. Capitalizing on the accumulated knowledge in D. melanogaster, we present novel sets of high-confidence SFP candidates and transcription factors presumptively involved in regulating the expression of SFPs. We also address open questions by performing comparative genomic analyses that failed to support the existence of many conserved SFPs shared by most dipterans and indicated that gene co-option is the most frequent mechanism accounting for the origin of Drosophila SFP-coding genes. We hope our update establishes a starting point to integrate further data and thus widen the understanding of the intricate evolution of these proteins.
Collapse
Affiliation(s)
- Juan Hurtado
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Silvina Anahí Belliard
- Laboratorio de Insectos de Importancia Agronómica, IGEAF (INTA), GV-IABIMO (CONICET), Buenos Aires, Argentina
| | - Santiago Revale
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
24
|
Patlar B, Civetta A. Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster. BMC Ecol Evol 2022; 22:20. [PMID: 35196983 PMCID: PMC8867848 DOI: 10.1186/s12862-022-01975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background The rapid evolution of seminal fluid proteins (SFPs) has been suggested to be driven by adaptations to postcopulatory sexual selection (e.g. sperm competition). However, we have recently shown that most SFPs evolve rapidly under relaxed selective pressures. Given the role of SFPs in competition for fertilization phenotypes, like the ability to transfer and store sperm and the modulation of female receptivity and ovulation, the prevalence of selectively relaxed SFPs appears as a conundrum. One possible explanation is that selection on SFPs might be relaxed in terms of protein amino acid content, but adjustments of expression are essential for post-mating function. Interestingly, there is a general lack of systematic implementation of gene expression perturbation assays to monitor their effect on phenotypes related to sperm competition. Results We successfully manipulated the expression of 16 SFP encoding genes using tissue-specific knockdowns (KDs) and determined the effect of these genes’ perturbation on three important post-mating phenotypes: female refractoriness to remating, defensive (P1), and offensive (P2) sperm competitive abilities in Drosophila melanogaster. Our analyses show that KDs of tested SFP genes do not affect female refractoriness to remating and P2, however, most gene KDs significantly decreased P1. Moreover, KDs of SFP genes that are selectively constrained in terms of protein-coding sequence evolution have lower P1 than KDs of genes evolving under relaxed selection. Conclusions Our results suggest a more predominant role, than previously acknowledged, of variation in gene expression than coding sequence changes on sperm competitive ability in D. melanogaster. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01975-1.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
25
|
Majane AC, Cridland JM, Begun DJ. Single-nucleus transcriptomes reveal evolutionary and functional properties of cell types in the Drosophila accessory gland. Genetics 2022; 220:iyab213. [PMID: 34849871 PMCID: PMC9097260 DOI: 10.1093/genetics/iyab213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Many traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in postcopulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female postcopulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female postcopulatory biology, yet relatively little is known about their evolutionary properties. Here, we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally defines each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male postcopulatory traits.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Wiberg RAW, Brand JN, Schärer L. Faster Rates of Molecular Sequence Evolution in Reproduction-Related Genes and in Species with Hypodermic Sperm Morphologies. Mol Biol Evol 2021; 38:5685-5703. [PMID: 34534329 PMCID: PMC8662610 DOI: 10.1093/molbev/msab276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sexual selection drives the evolution of many striking behaviors and morphologies and should leave signatures of selection at loci underlying these phenotypes. However, although loci thought to be under sexual selection often evolve rapidly, few studies have contrasted rates of molecular sequence evolution at such loci across lineages with different sexual selection contexts. Furthermore, work has focused on separate sexed animals, neglecting alternative sexual systems. We investigate rates of molecular sequence evolution in hermaphroditic flatworms of the genus Macrostomum. Specifically, we compare species that exhibit contrasting sperm morphologies, strongly associated with multiple convergent shifts in the mating strategy, reflecting different sexual selection contexts. Species donating and receiving sperm in every mating have sperm with bristles, likely to prevent sperm removal. Meanwhile, species that hypodermically inject sperm lack bristles, potentially as an adaptation to the environment experienced by hypodermic sperm. Combining functional annotations from the model, Macrostomum lignano, with transcriptomes from 93 congeners, we find genus-wide faster sequence evolution in reproduction-related versus ubiquitously expressed genes, consistent with stronger sexual selection on the former. Additionally, species with hypodermic sperm morphologies had elevated molecular sequence evolution, regardless of a gene's functional annotation. These genome-wide patterns suggest reduced selection efficiency following shifts to hypodermic mating, possibly due to higher selfing rates in these species. Moreover, we find little evidence for convergent amino acid changes across species. Our work not only shows that reproduction-related genes evolve rapidly also in hermaphroditic animals, but also that well-replicated contrasts of different sexual selection contexts can reveal underappreciated genome-wide effects.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|