1
|
Quintero I. The diffused evolutionary dynamics of morphological novelty. Proc Natl Acad Sci U S A 2025; 122:e2425573122. [PMID: 40310458 DOI: 10.1073/pnas.2425573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Rates of evolution are fundamental to understand the processes that shaped the history of life. The predominant view holds that high rates of phenotypic evolution result from lineage transitions across peaks in an adaptive landscape, with subsequent slow-downs, but evidence remains debated. I developed a phylogenetic "diffused Brownian motion" model that characterizes nuanced variations in evolutionary rates and use it to comprehensively assess body size evolution and its underlying rates for 2,950 extinct and 792 extant species that span over 450 Mys of evolution. I find that evolutionary rates do not conform to expectations from adaptive landscape theory, but rather have been stable, unaffected by the accumulation of phenotypic disparity. Long-term evolutionary trends, such as several net increases in clade-average body size, result both from sustained evolution at the lineage level and the sorting of species phenotypes and their underlying evolutionary rates at the clade level, sometimes acting in opposite directions. These findings substantiate an active role of species in shaping their environment that generate continuous novelty of life forms.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS, Département de biologie, École normale supérieure, CNRS, INSERM, Université Paris Science and Lettres, Paris 75005, France
| |
Collapse
|
2
|
Whittingham MA, Korasidis VA, Fraser D. Functional stasis and changing habitat preferences among mammalian communities from the PETM of the Bighorn Basin, Wyoming. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e20. [PMID: 40078814 PMCID: PMC11895753 DOI: 10.1017/ext.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025]
Abstract
The transition between the Paleocene and Eocene epochs (ca. 56 Ma) was marked by a period of rapid global warming of 5 °C to 8 °C following a carbon isotope excursion (CIE) lasting 200 ky or less referred to as the Paleocene-Eocene Thermal Maximum (PETM). The PETM precipitated a significant shift in the composition of North American floral communities and major mammalian turnover. We explored the ecological impacts of this phenomenon by analyzing 173 mammal species from the Bighorn Basin, Wyoming, USA, including their associated body alongside a database of 30 palynofloral localities as proxies for habitat. For each time bin, we calculated mean and median differences in body mass and habitat preference between significantly aggregated and segregated mammal species. Aggregated species showed significant similarity in habitat preference only prior to the PETM, after which habitat preference ceased to be a significant factor in community assembly. Our measures of differences in body mass space provide no evidence of a significant impact of competitive interactions on community assembly across the PETM, aligning with previous work. Our results indicate the persistence of a stable mammalian functional community structure despite taxonomic turnover, climate change and broadening habitat preferences.
Collapse
Affiliation(s)
| | - Vera A. Korasidis
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, VIC, AUS
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Danielle Fraser
- Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Paleobiology, Canadian Museum of Nature, Ottawa, ON, Canada
- Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
3
|
Grossnickle DM, Sadier A, Patterson E, Cortés-Viruet NN, Jiménez-Rivera SM, Sears KE, Santana SE. The hierarchical radiation of phyllostomid bats as revealed by adaptive molar morphology. Curr Biol 2024; 34:1284-1294.e3. [PMID: 38447572 DOI: 10.1016/j.cub.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.
Collapse
Affiliation(s)
- David M Grossnickle
- Natural Sciences Department, Oregon Institute of Technology, Campus Drive, Klamath Falls, OR 97601, USA.
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA; Institut des Sciences de l'Evolution de Montpellier, Universite de Montpellier, Place Eugene Bataillon, Montpellier 34095, France
| | - Edward Patterson
- Department of Biology, University of Washington, Stevens Way NE, Seattle, WA 98195, USA
| | - Nashaly N Cortés-Viruet
- Department of Animal Science, University of Puerto Rico at Mayagüez, Calle Post, Mayagüez, PR 00681, USA
| | - Stephanie M Jiménez-Rivera
- Caribbean Manatee Conservation Center, Inter American University of Puerto Rico, 500 Dr. John Will Harris Street, Bayamón, PR 00957, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Stevens Way NE, Seattle, WA 98195, USA; Burke Museum of Natural History and Culture, University of Washington, Memorial Way NE, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Law CJ, Hlusko LJ, Tseng ZJ. Uncovering the mosaic evolution of the carnivoran skeletal system. Biol Lett 2024; 20:20230526. [PMID: 38263882 PMCID: PMC10806395 DOI: 10.1098/rsbl.2023.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.
Collapse
Affiliation(s)
- Chris J. Law
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Leslea J. Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z. Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Burin G, Park T, James TD, Slater GJ, Cooper N. The dynamic adaptive landscape of cetacean body size. Curr Biol 2023; 33:1787-1794.e3. [PMID: 36990088 DOI: 10.1016/j.cub.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Adaptive landscapes are central to evolutionary theory, forming a conceptual bridge between micro- and macroevolution.1,2,3,4 Evolution by natural selection across an adaptive landscape should drive lineages toward fitness peaks, shaping the distribution of phenotypic variation within and among clades over evolutionary timescales.5 The location and breadth of these peaks in phenotypic space can also evolve,4 but whether phylogenetic comparative methods can detect such patterns has largely remained unexplored.6 Here, we characterize the global and local adaptive landscape for total body length in cetaceans (whales, dolphins, and relatives), a trait that spans 5 orders of magnitude, across their ∼53 million year evolutionary history. Using phylogenetic comparative methods, we analyze shifts in long-term mean body length7 and directional changes in average trait values8 for 345 living and fossil cetacean taxa. Remarkably, we find that the global macroevolutionary adaptive landscape of cetacean body length is relatively flat, with very few peak shifts occurring after cetaceans entered the oceans. Local peaks are more numerous and manifest as trends along branches linked to specific adaptations. These results contrast with previous studies using only extant taxa,9 highlighting the vital role of fossil data for understanding macroevolution.10,11,12 Our results indicate that adaptive peaks are dynamic and are associated with subzones of local adaptations, creating moving targets for species adaptation. In addition, we identify limits in our ability to detect some evolutionary patterns and processes and suggest that multiple approaches are required to characterize complex hierarchical patterns of adaptation in deep time.
Collapse
|