1
|
Korte M, Walsh MR. Increases in predation favour evolutionary shifts in behavioural plasticity in Trinidadian killifish (Anablepsoides hartii). J Evol Biol 2025; 38:572-579. [PMID: 40127020 DOI: 10.1093/jeb/voaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/02/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Behavioural plasticity is expected to be favoured in risky environments, such as when prey species coexist with predators because prey must alternate between fitness-related foraging/mating behaviours and antipredator behaviours that enhance survival. We compared behavioural plasticity in Trinidadian killifish that are found in sites with and without predators. We quantified aggressive and antipredator behaviours via a mirror assay in second-generation lab-reared and wild-caught killifish before and after exposure to predator cues. We compared 2 types of aggression including: overt aggression (ramming, biting, lunging, and tail-slapping) and display aggression (spine arching, bending into an s-shape, and opercular flaring). We additionally compared the amount of time the fish spent frozen as a proxy for antipredator behaviour. We show clear differences in plasticity between populations with and without predators. Killifish from sites with predators decreased overt aggression in response to exposure to predator chemical cues. Plastic responses to the predator cue were lower in killifish from sites that lack predators. Interestingly, wild fish from sites without predators did respond to the predator cue by decreasing overt aggression and increasing time spent frozen, though to a lesser degree compared to the fish from sites with predators. Our results support the expectation that development in a risky environment favours evolutionary changes in predator-mediated behavioural plasticity.
Collapse
Affiliation(s)
- Meghan Korte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
2
|
Fraimout A, Guillaume F, Li Z, Sillanpää MJ, Rastas P, Merilä J. Dissecting the genetic architecture of quantitative traits using genome-wide identity-by-descent sharing. Mol Ecol 2024; 33:e17299. [PMID: 38380534 DOI: 10.1111/mec.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.
Collapse
Affiliation(s)
- Antoine Fraimout
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Frédéric Guillaume
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, FI-90014 University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Meuthen D, Salahinejad A, Chivers DP, Ferrari MCO. Transgenerational plasticity of exploratory behavior and a hidden cost of mismatched risk environments between parental sexes. Sci Rep 2023; 13:19737. [PMID: 37957198 PMCID: PMC10643415 DOI: 10.1038/s41598-023-46269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We require a better understanding of the relative contribution of different modes of non-genetic inheritance in behavioral trait development. Thus, we investigate variation in exploratory behavior, which is ecologically relevant and a target of selection. The metabolic hypothesis predicts exploratory behavior to be size-dependent across taxa. This size-dependency is cancelled out under high perceived risk, allowing us to determine the transgenerationally integrated estimated level of risk. Using fathead minnows Pimephales promelas, we manipulated perceived risk in mothers, fathers, caring males and offspring through continuous exposure to either conspecific alarm cues or to a control water treatment. In 1000 four-month old offspring, we determined body sizes and exploratory behavior. Perceived high risk in mothers, followed by personal risk, was most effective in eliminating size-dependent behavior whereas effects of paternal risk on offspring behavioral development were substantially weaker. When maternal risk is high, environmental mismatches between parents prevented offspring from responding appropriately to personal high risk. The environment of the caring male also impacted offspring behavior to a greater extent than that of its genetic parents. Our study highlights the high relative importance of maternal, personal and caring male risk environments and showcases potential costs of an environmental mismatch between parental sexes.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
4
|
Zhang C, Reid K, Sands AF, Fraimout A, Schierup MH, Merilä J. De Novo Mutation Rates in Sticklebacks. Mol Biol Evol 2023; 40:msad192. [PMID: 37648662 PMCID: PMC10503787 DOI: 10.1093/molbev/msad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Collapse
Affiliation(s)
- Chaowei Zhang
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Arthur F Sands
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Antoine Fraimout
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Juha Merilä
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|