1
|
Xing S, Liu Y, Xie H, Guo C, Wang X, Lv B, Li X, Shao J, Guo Q, Feng F, Sun H. Discovery of highly potent AKR1Cs pan-inhibitors as chemotherapeutic potentiators to restore breast cancer drug resistance. Eur J Med Chem 2025; 289:117413. [PMID: 40015157 DOI: 10.1016/j.ejmech.2025.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The acquired resistance of doxorubicin (DOX) significantly limits their application in breast cancer treatment. In earlier investigations, a pan-inhibitor, S07-2010, exhibiting inhibitory activity against Aldo-Keto Reductase 1C1-1C4 (AKR1C1-1C4) was discovered through virtual screening. In this study, four rounds of structural modifications were conducted, and the optimized compound 29 exhibited potent inhibitory activity against AKR1C1-1C4 (AKR1C1 IC50 = 0.09 μM, AKR1C2 IC50 = 0.28 μM, AKR1C3 IC50 = 0.05 μM, AKR1C4 IC50 = 0.51 μM). Molecular dynamics (MD) simulations revealed that 29 consistently occupied both SP2 and SP3 pockets, which may explain its pan-inhibitory activity. Utilizing highly DOX resistant MCF-7/ADR cells, 29 demonstrated superior potential as a therapeutic agent for re-sensitizing drug-resistant cell lines to chemotherapy both in vitro and in vivo, suggesting that pan-inhibition of AKR1C1-1C4 may serve as a more promising therapeutic strategy for drug-resistant breast cancer. In summary, Compound 29 may be a promising therapeutic adjuvant in the development of novel strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanfang Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaolong Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xinyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jikuan Shao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
3
|
Tow R, Hanoun S, Andresen B, Shahid A, Wang J, Kelly KM, Meyskens FL, Huang Y. Recent Advances in Clinical Research for Skin Cancer Chemoprevention. Cancers (Basel) 2023; 15:3819. [PMID: 37568635 PMCID: PMC10417305 DOI: 10.3390/cancers15153819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Neoplasm arising from the keratinocytes or melanocytes in the skin is the most prevalent type of cancer in the United States and worldwide. Since ultraviolet (UV) radiation may be a causing factor for several types of skin cancer, effective strategies to manage skin cancer include preventive measures such as minimizing exposure to UV and applying sunscreens. However, the effect of sunscreen in reducing skin cancer incidence remains uncertain. An alternative approach to prevent skin cancer is chemoprevention, which is defined as using either natural products or synthetic compounds to inhibit, delay, or reverse the development of cancer. Preclinical studies have demonstrated the effectiveness of multiple pharmacological agents and dietary supplements. However, whether preclinical findings can be translated into clinical application is unknown. This review evaluates the state of recent clinical trials investigating chemopreventive agents focusing on skin cancer to compare the target populations, interventions, endpoints, and outcomes of these trials. The ClinicalTrials and PubMed databases were searched for their available literature using the key words "skin cancer" and "chemoprevention". The objective of this review is to provide updated information on the effectiveness and side effects of promising chemopreventive agents in human subjects and to identify research gaps.
Collapse
Affiliation(s)
- Ruby Tow
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| | - Samuel Hanoun
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| | - Bradley Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| | - Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| | - Kristen M. Kelly
- Department of Dermatology, University of California, Irvine, CA 92697, USA;
| | - Frank L. Meyskens
- Departments of Medicine and Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (R.T.); (S.H.); (B.A.); (A.S.); (J.W.)
| |
Collapse
|
4
|
Wu C, Dai C, Li X, Sun M, Chu H, Xuan Q, Yin Y, Fang C, Yang F, Jiang Z, Lv Q, He K, Qu Y, Zhao B, Cai K, Zhang S, Sun R, Xu G, Zhang L, Sun S, Liu Y. AKR1C3-dependent lipid droplet formation confers hepatocellular carcinoma cell adaptability to targeted therapy. Theranostics 2022; 12:7681-7698. [PMID: 36451864 PMCID: PMC9706585 DOI: 10.7150/thno.74974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.
Collapse
Affiliation(s)
- Changqing Wu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chaoliu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinyu Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mingju Sun
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongwei Chu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiuhui Xuan
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yalei Yin
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengnan Fang
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhonghao Jiang
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qing Lv
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Keqing He
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yiying Qu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baofeng Zhao
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ke Cai
- School of Life Science, Dalian University, Dalian 116023, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ran Sun
- National Engineering Laboratory for Internet Medical System and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guowang Xu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
6
|
Endo S, Oguri H, Segawa J, Kawai M, Hu D, Xia S, Okada T, Irie K, Fujii S, Gouda H, Iguchi K, Matsukawa T, Fujimoto N, Nakayama T, Toyooka N, Matsunaga T, Ikari A. Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. J Med Chem 2020; 63:10396-10411. [PMID: 32847363 DOI: 10.1021/acs.jmedchem.0c00939] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aldo-keto reductase (AKR) 1C3 catalyzes the synthesis of active androgens that promote the progression of prostate cancer. AKR1C3 also contributes to androgen-independent cell proliferation and survival through the metabolism of prostaglandins and reactive aldehydes. Because of its elevation in castration-resistant prostate cancer (CRPC) tissues, AKR1C3 is a promising therapeutic target for CRPC. In this study, we found a novel potent AKR1C3 inhibitor, N-(4-fluorophenyl)-8-hydroxy-2-imino-2H-chromene-3-carboxamide (2d), and synthesized its derivatives with IC50 values of 25-56 nM and >220-fold selectivity over other AKRs (1C1, 1C2, and 1C4). The structural factors for the inhibitory potency were elucidated by crystallographic study of AKR1C3 complexes with 2j and 2l. The inhibitors suppressed proliferation of prostate cancer 22Rv1 and PC3 cells through both androgen-dependent and androgen-independent mechanisms. Additionally, 2j and 2l prevented prostate tumor growth in a xenograft mouse model. Furthermore, the inhibitors significantly augmented apoptotic cell death induced by anti-CRPC drugs (abiraterone or enzalutamide).
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Department of Pharmacy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takuo Matsukawa
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
7
|
Abstract
Abstract
Purpose of Review
Skin cancers account for more than 40% of all cancers in the USA and continue to rise in incidence. It is prudent to understand the current burden and pathogenesis of photocarcinogenesis and preventive measures.
Recent Findings
Insights into recently discovered mechanisms have paved way for potential targets for prevention and therapeutics. Nicotinamide has shown promising results as an oral chemopreventive agent. UVB affects the DHODH pathway of pyrimidine synthesis via STAT 3. DHODH inhibition by leflunomide may be a potential targeted chemoprevention strategy. A photolyase containing sunscreen, which repairs UV-damaged DNA, effectively reduced new precancerous lesions. Several antioxidants and anti-inflammatory agents including many phytochemicals ameliorate the process of photocarcinogenesis in preclinical and clinical studies, e.g., green tea polyphenols, Polypodium leucotomos extract, and Timosaponin A III. Diet can potentially affect skin cancer risk by its ability to modify oxidative stress and cell signaling pathways.
Summary
Photocarcinogenesis is a multi-step process. An in-depth understanding is instrumental in development of novel agents for prevention and treatment of skin cancers.
Collapse
|
8
|
Liu Y, He S, Chen Y, Liu Y, Feng F, Liu W, Guo Q, Zhao L, Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J Med Chem 2020; 63:11305-11329. [PMID: 32463235 DOI: 10.1021/acs.jmedchem.9b02138] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human aldo-keto reductase family 1 member C3 (AKR1C3) is known as a hormone activity regulator and prostaglandin F (PGF) synthase that regulates the occupancy of hormone receptors and cell proliferation. Because of the overexpression in metabolic diseases and various hormone-dependent and -independent carcinomas, as well as the emergence of clinical drug resistance, an increasing number of studies have investigated AKR1C3 inhibitors. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We propose our viewpoints on the current problems associated with AKR1C3 inhibitors with the aim of providing a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
9
|
Li X, Hong X, Gao X, Gu X, Xiong W, Zhao J, Yu H, Cui M, Xie M, Bai Y, Sun S. Methyl jasmonate enhances the radiation sensitivity of esophageal carcinoma cells by inhibiting the 11-ketoprostaglandin reductase activity of AKR1C3. Cancer Manag Res 2018; 10:3149-3158. [PMID: 30214307 PMCID: PMC6124458 DOI: 10.2147/cmar.s166942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose In our previous study, we found that AKR1C3 was a radioresistance gene in KY170R cells. Downregulating the expression of AKR1C3 could enhance the radiosensitivity of esophageal carcinoma cells. In this study, we investigated whether methyl jasmonate (MeJ), an inhibitor of Aldo-keto reductase family1 member C3 (AKR1C3), could overcome radiation resistance in AKR1C3 highly expressed cells. Patients and methods We used clone formation assays to detect radiosensitivity effects. Flow cytometry assays were used to detect reactive oxygen species (ROS) accumulation and apoptosis. Enzyme linked immunosorbent assays (ELISAs) were used to detect the concentrations of prostaglandin F2 (PGF2) and prostaglandin D2 (PGD2) in the cells after incubation with MeJ. Western blotting was used to detect AKR1C3 and peroxisome proliferator-activated receptor gamma (PPARγ) expression. Results We found that AKR1C3 was highly expressed in radioresistant esophageal carcinoma cells. MeJ inhibited the expression of AKR1C3 and enhanced the radiation sensitivity of esophageal carcinoma cells expressing high levels of AKR1C3 (P<0.05). MeJ could inhibit the 11-ketoprostaglandin reductase activity of AKR1C3 in a dose-dependent manner in KY170R cells. Incubation of KY170R cells with 200 µmol/L of MeJ for 24 h reduced the expression of PGF2 by roughly 30% (P<0.05). The PPAR pathway inhibitor GW9662 prevented the radiation sensitivity enhancement imparted by MeJ. After adding GW9662, there were no significant differences between the radiation sensitivities of MeJ-treated and -untreated KY170R cells (P>0.05). The radiation sensitivity effect of MeJ also depended upon the generation of ROS in KY170R cells; 48 h after irradiation, ROS levels in the MeJ group was twofold higher than in the untreated KY170R cells (P<0.05). The ROS scavenger, N-acetyl cysteine, could reverse the radiosensitivity effects of MeJ (P>0.05). Conclusion Our results indicate that MeJ can increase the radiation sensitivity of AKR1C3-overexpressing KY170R cells by inhibiting the 11-ketoprostaglandin reductase activity of AKR1C3 and increasing cellular ROS levels.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Xin Hong
- Department of Urology, Peking University International Hospital, Peking University, Beijing, China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Xiaobin Gu
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Wei Xiong
- Department of Oncology, Tangshan People's Hospital, Hebei, China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongliang Yu
- Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Cui
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Shaoqian Sun
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
10
|
Hara A, Endo S, Matsunaga T, Soda M, Yashiro K, El-Kabbani O. Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. J Biochem 2017; 162:371-379. [DOI: 10.1093/jb/mvx041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
|
11
|
Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism. Chem Biol Interact 2016; 256:142-53. [PMID: 27417252 DOI: 10.1016/j.cbi.2016.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of gastrointestinal cancer cells.
Collapse
|
12
|
Kim D, Garza LA. A new target for squamous cell skin cancer? Exp Dermatol 2016; 24:14-5. [PMID: 25356957 DOI: 10.1111/exd.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Dongwon Kim
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, Saksela O, Hölttä E. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget 2016; 7:15065-92. [PMID: 26918341 PMCID: PMC4924771 DOI: 10.18632/oncotarget.7604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/31/2016] [Indexed: 02/04/2023] Open
Abstract
Melanoma is notorious for its high tendency to metastasize and its refractoriness to conventional treatments after metastasis, and the responses to most targeted therapies are short-lived. A better understanding of the molecular mechanisms behind melanoma development and progression is needed to develop more effective therapies and to identify new markers to predict disease behavior. Here, we compared the gene expression profiles of benign nevi, and non-metastatic and metastatic primary melanomas to identify any common changes in disease progression. We identified several genes associated with inflammation, angiogenesis, and extracellular matrix modification to be upregulated in metastatic melanomas. We selected one of these genes, collagen triple helix repeat containing 1 (CTHRC1), for detailed analysis, and found that CTHRC1 was expressed in both melanoma cells and the associated fibroblasts, as well as in the endothelium of tumor blood vessels. Knockdown of CTHRC1 expression by shRNAs in melanoma cells inhibited their migration in Transwell assays and their invasion in three-dimensional collagen and Matrigel matrices. We also elucidated the possible down-stream effectors of CTHRC1 by gene expression profiling of the CTHRC1-knockdown cells. Our analyses showed that CTHRC1 is regulated coordinately with fibronectin and integrin β3 by the pro-invasive and -angiogenic transcription factor NFATC2. We also found CTHRC1 to be a target of TFGβ and BRAF. These data highlight the importance of tumor stroma in melanoma progression. Furthermore, CTHRC1 was recognized as an important mediator of melanoma cell migration and invasion, providing together with its regulators-NFATC2, TGFβ, and BRAF-attractive therapeutic targets against metastatic melanomas.
Collapse
Affiliation(s)
- Johanna Eriksson
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vadim Le Joncour
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Nummela
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Laakkonen
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
14
|
Mantel A, Newsome A, Thekkudan T, Frazier R, Katdare M. The role of aldo-keto reductase 1C3 (AKR1C3)-mediated prostaglandin D2 (PGD2) metabolism in keloids. Exp Dermatol 2015; 25:38-43. [PMID: 26308156 DOI: 10.1111/exd.12854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 01/12/2023]
Abstract
Keloids are progressively expanding scars, mostly prevalent in individuals of African descent. Previous data identified increased mast cell number and activation state in keloids suggesting a role in disease progression. The major eicosanoid secreted by mast cells is prostaglandin D2 (PGD2), a relatively unstable pro-inflammatory mediator which can be spontaneously converted to 15-deoxy-(Delta12,14)-prostaglandin J2(15d-PGJ2) or enzymatically metabolized to 9α,11β-PGF2 by aldo-keto reductase 1C3 (AKR1C3). In this work, we investigated the possible role of PGD2 and its metabolites in keloids using CRL1762 keloid fibroblasts (KF) and immunohistochemical staining. Our data suggested approximately 3-fold increase of tryptase-positive mast cell count in keloids compared with normal skin. Furthermore, AKR1C3 was overexpressed in the fibrotic area of keloids while relatively weak staining detected in normal skin. Metabolism of PGD2 to 9α,11β-PGF2 by both, KF and normal fibroblasts, was dependent on AKR1C3 as this reaction was attenuated in the presence of the AKR1C3 inhibitor, 2'-hydroxyflavanone, or in cells with decreased AKR1C3 expression. 15d-PGJ2, but not the other tested PGs, inhibited KF proliferation, attenuated KF-mediated collagen gel contraction and increased caspase-3 activation. In addition, treatment with 15d-PGJ2 activated P38-MAPK, induced reactive oxygen species and upregulated superoxide dismutase-1 (SOD-1). Finally, inhibition of P38-MAPK further augmented 15d-PGJ2-induced caspase-3 cleavage and attenuated its effect on SOD-1 transcription. This work suggests that localized dual inhibition of AKR1C3 and P38-MAPK may inhibit keloid progression. Inhibiting AKR1C3 activity may generate oxidative environment due to redirection of PGD2 metabolism towards 15d-PGJ2 while inhibition of P38-MAPK will sensitize keloid cells to ROS-induced apoptosis.
Collapse
Affiliation(s)
- Alon Mantel
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Austin Newsome
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Theresa Thekkudan
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Robert Frazier
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - Meena Katdare
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA.,Department of Dermatology, Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| |
Collapse
|
15
|
Poligone B, Gilmore ES, Alexander CV, Oleksyn D, Gillespie K, Zhao J, Ibrahim SF, Pentland AP, Brown MD, Chen L. PKK suppresses tumor growth and is decreased in squamous cell carcinoma of the skin. J Invest Dermatol 2014; 135:869-876. [PMID: 25285922 PMCID: PMC4324088 DOI: 10.1038/jid.2014.428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/26/2014] [Accepted: 09/13/2014] [Indexed: 01/06/2023]
Abstract
Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments.
Collapse
Affiliation(s)
- Brian Poligone
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA.
| | - Elaine S Gilmore
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina V Alexander
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - David Oleksyn
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kathleen Gillespie
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Jiyong Zhao
- Department of Biomedical Genetics, University of Rochester School of Medicine, Rochester, New York, USA
| | - Sherrif F Ibrahim
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Alice P Pentland
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Marc D Brown
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Luojing Chen
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|