1
|
Yeh CY, Su SH, Tan YF, Tsai TF, Liang PH, Kelel M, Weng HJ, Hsiao YP, Lu CH, Tsai CH, Lee CH, Clausen BE, Liu FT, Lee YL. PD-L1 Enhanced by cis-Urocanic Acid on Langerhans Cells Inhibits Vγ4 + γδT17 Cells in Psoriatic Skin Inflammation. J Invest Dermatol 2023:S0022-202X(23)00161-6. [PMID: 36868499 DOI: 10.1016/j.jid.2023.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Psoriasis is an IL-23/IL-17-mediated inflammatory autoimmune dermatosis and ultraviolet B (UVB) may contribute to immunosuppression and ameliorate associated symptoms. One of the pathophysiology underlying UVB therapy is through the production of cis-urocanic acid (cis-UCA) from keratinocytes. However, the detailed mechanism is yet to be fully understood. In the current study, we found filaggrin expression and serum cis-UCA levels were significantly lower in psoriasis patients than in healthy controls. We also noted that cis-UCA application inhibited psoriasiform inflammation through the reduction of Vγ4+ γδT17 cells in murine skin and draining lymph nodes. Meanwhile, CCR6 was down-regulated on γδT17 cells, which would suppress the inflammatory reaction at a distal skin site. We revealed that 5-HT2A receptor (HTR2A), the known cis-UCA receptor, was highly expressed on Langerhans cells (LCs) in the skin. cis-UCA also inhibited IL-23 expression and induced PD-L1 on LCs, leading to the attenuated proliferation and migration of γδT cells. Compared to the isotype control, α-PD-L1 treatment in vivo could reverse the anti-psoriatic effects of cis-UCA. PD-L1 expression on LCs was sustained through cis-UCA-induced MAPK/ERK pathway. These findings uncover the cis-UCA-induced PD-L1-mediated immunosuppression on LCs, which facilitates the resolution of inflammatory dermatoses.
Collapse
Affiliation(s)
- Chen-Yun Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Han Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yeh Fong Tan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Musin Kelel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hao-Jui Weng
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Hui Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
3
|
Abstract
Phototherapeutic modalities induce apoptosis of keratinocytes and immune cells, impact cytokine production, downregulate the IL-23/Th17 axis, and induce regulatory T cells. As in anti-IL-17 or anti-IL-23 antibody treatment, the dual action of phototherapy on skin and the immune system is likely responsible for sustained resolution of lesions in diseases such as psoriasis. In cutaneous T cell lymphoma, phototherapy may function by causing tumor cell apoptosis and eliminating the neoplastic and inflammatory infiltrate. Further research on phototherapeutic mechanisms will help advance, optimize, and refine dermatologic treatments and may open up novel avenues for treatment strategies in dermatology and beyond.
Collapse
Affiliation(s)
- Zizi Yu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Peter Wolf
- Department of Dermatology, Research Unit for Photodermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
4
|
Patra V, Wagner K, Arulampalam V, Wolf P. Skin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function. iScience 2019; 15:211-222. [PMID: 31079025 PMCID: PMC6515114 DOI: 10.1016/j.isci.2019.04.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/18/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
The skin is colonized by a diverse microbiome intricately involved in various molecular and cellular processes within the skin and beyond. UV radiation is known to induce profound changes in the skin and modulate the immune response. However, the role of the microbiome in UV-induced immune suppression has been overlooked. By employing the standard model of contact hypersensitivity (using germ-free mice) we found diminished UV-induced systemic immune suppression in the presence of microbiome. Upon UV exposure, we found enhanced epidermal hyperplasia and neutrophilic infiltration in the presence and enhanced numbers of mast cells and monocyte or macrophages in the absence of microbiome. Transcriptome analysis revealed a predominant expression of cytokine genes related to pro-inflammatory milieu in the presence versus immunosuppressive milieu (with increased interleukin-10) in the absence of microbiome. Collectively, microbiome abrogates the immunosuppressive response to UV by modulating gene expression and cellular microenvironment of the skin. Epidermal and immune response to UV is dependent on skin microbiome Increased neutrophilic infiltration and expression of IL-1β in SPF mice after UV-R Elevated macrophage infiltration and expression of IL-10 in GF mice after UV-R Skin microbiome diminishes UV-induced immune suppression to contact allergen DNFB
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria; Core Facility for Germfree Research (CFGR), Department of Comparative Medicine and Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Velmurugesan Arulampalam
- Core Facility for Germfree Research (CFGR), Department of Comparative Medicine and Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Vieyra-Garcia PA, Wolf P. From Early Immunomodulatory Triggers to Immunosuppressive Outcome: Therapeutic Implications of the Complex Interplay Between the Wavebands of Sunlight and the Skin. Front Med (Lausanne) 2018; 5:232. [PMID: 30250844 PMCID: PMC6139367 DOI: 10.3389/fmed.2018.00232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Wolf P, de Gruijl F. Focus theme issue December 2016: Photobiology & photodermatology: "Photobiology first". Exp Dermatol 2018; 25:935-936. [PMID: 27897336 DOI: 10.1111/exd.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Frank de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Wolf P, Weger W, Patra V, Gruber-Wackernagel A, Byrne SN. Desired response to phototherapy vs photoaggravation in psoriasis: what makes the difference? Exp Dermatol 2018; 25:937-944. [PMID: 27376966 DOI: 10.1111/exd.13137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
Psoriasis commonly responds beneficially to UV radiation from natural sunlight or artificial sources. Therapeutic mechanisms include the proapoptotic and immunomodulating effects of UV, affecting many cells and involving a variety of pro- and anti-inflammatory cytokines, downregulating the Th17/IL-23 response with simultaneous induction of regulatory immune cells. However, exposure to UV radiation in a subset of psoriasis patients leads to exacerbation of the disease. We herein shed light on the predisposing factors of photosensitive psoriasis, including genetics (such as HLA-Cw*0602 or CARD14), gender and coexisting photodermatoses such as polymorphic light eruption (PLE) in the context of potential molecular mechanisms behind therapeutic photoresponsiveness or photoaggravation. UV-induced damage/pathogen-associated molecular patterns, damage to self-coding RNA (signalling through Toll-like receptors), certain antimicrobial peptides and/or inflammasome activation may induce innate immunity, leading to psoriasis at the site of UV exposure when there is concomitant, predisposing resistance against UV-induced suppression of the adaptive immune response (like in PLE) that otherwise would act to reduce psoriasis.
Collapse
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Wolfgang Weger
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - VijayKumar Patra
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Feldreich N, Ringden O, Emtestam L. Photochemotherapy and Graft-versus-Leukemia Reaction in Acute Leukemia: Tumor Immunity and Survival Are Dependent on Timing of Photochemotherapy of the Skin. Dermatology 2017; 233:303-313. [PMID: 29232687 DOI: 10.1159/000484138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/07/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cure of acute leukemia after transplantation is mediated by the grafted cells. We investigated the graft-versus-leukemia effect (GVL) in patients with cutaneous acute graft-versus-host disease (GVHD) treated with photochemotherapy (psoralen and ultraviolet light type A). METHOD Forty-seven patients with acute leukemia were followed 5,000 days after transplantation to assess survival and GVL by multivariate analysis. The primary predictor was time to treatment of cutaneous acute GVHD by photochemotherapy separated into treatment start during the first week of acute GVHD versus after the first week of acute GVHD. RESULTS Photochemotherapy started after the first week of acute GVHD predicted GVL with a hazard ratio (HR) of 3.94 (95% confidence interval, CI, 1.67-9.33, p = 0.0018) and survival with preserved GVL with an HR of 2.63 (95% CI 1.30-5.32, p = 0.007). The effects on GVL and survival with preserved GVL were present regardless of whether the patients were transplanted in remission or relapse (p < 0.05). Chronic GVHD came earlier in the group that started photochemotherapy after 1 week of acute GHVD, but chronic GVHD did not increase the GVL. CONCLUSION The timing of photochemotherapy after cutaneous acute GVHD may direct the GVL and predict long-term leukemia-free survival.
Collapse
Affiliation(s)
- Nicolas Feldreich
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Vieyra-Garcia P, Wolf P. Psoralen-ultraviolet A maintenance in mycosis fungoides: the underlying question. Br J Dermatol 2017; 177:336-337. [PMID: 28833012 DOI: 10.1111/bjd.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - P Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Patra V, Byrne SN, Wolf P. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression? Front Microbiol 2016; 7:1235. [PMID: 27559331 PMCID: PMC4979252 DOI: 10.3389/fmicb.2016.01235] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression.
Collapse
Affiliation(s)
- VijayKumar Patra
- Research Unit for Photodermatology, Department of Dermatology, Medical University of GrazGraz, Austria; Center for Medical Research, Medical University of GrazGraz, Austria
| | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Sydney Medical School, The Charles Perkins Center Hub at The University of Sydney, Sydney NSW, Australia
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz Graz, Austria
| |
Collapse
|