1
|
Paz M, Lio P. Dermatological Manifestations and Sebum Composition in Parkinson's Disease. Dermatol Pract Concept 2025; 15:dpc.1501a4921. [PMID: 40117607 PMCID: PMC11928091 DOI: 10.5826/dpc.1501a4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 03/23/2025] Open
Abstract
INTRODUCTION Parkinson disease (PD) is a multifaceted neurodegenerative disorder known for its hallmark motor symptoms. However, nonmotor manifestations, specifically dermatological changes, precede motor symptoms and may thus serve as vital early indicators of PD. OBJECTIVES This article explores the skin-related changes associated with PD, focusing on alterations in sebum composition, microbial dysbiosis, and the potential for leveraging dermatological assessments as early, noninvasive diagnostic markers for PD. METHODS A comprehensive literature review was conducted to investigate dermatological manifestations of PD, focusing on sebum changes in affected individuals. Research explored the clinical relevance of altered lipid profiles, volatile organic compound (VOC) contributions, and microbiome dysbiosis in those with PD. RESULTS Individuals with PD exhibit excess sebum production characterized by altered lipid profiles, including elevated short-chain fatty acids (SCFAs) and disruptions in sphingolipid metabolism. The lipid-rich environment also promotes overgrowth of Malessezia yeast, contributing to varied dermatological symptoms in those with PD. VOCs identified in sebum have been linked to unique odors and serve as biomarkers for diagnostic potential. These findings support the potential for early PD diagnosis through dermatologic assessment and sebum analysis. CONCLUSION Dermatological manifestations in PD offer promising noninvasive biomarkers for early diagnosis. Future research should aim to further elucidate the mechanisms underlying sebum dysregulation in PD and validate the clinical relevance of these biomarkers in larger populations.
Collapse
Affiliation(s)
- Meshi Paz
- Tulane University School of Medicine, New Orleans, USA
| | - Peter Lio
- Feinberg School of Medicine, Northwestern University, Chicago, USA
- Medical Dermatology Associates of Chicago, Chicago, USA
| |
Collapse
|
2
|
Langan EA. Prolactin: A Mammalian Stress Hormone and Its Role in Cutaneous Pathophysiology. Int J Mol Sci 2024; 25:7100. [PMID: 39000207 PMCID: PMC11241005 DOI: 10.3390/ijms25137100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
The hormone prolactin (PRL) is best recognised for its indispensable role in mammalian biology, specifically the regulation of lactation. Bearing in mind that the mammary gland is a modified sweat gland, it is perhaps unsurprising to discover that PRL also plays a significant role in cutaneous biology and is implicated in the pathogenesis of a range of skin diseases, often those reportedly triggered and/or exacerbated by psychological stress. Given that PRL has been implicated in over 300 biological processes, spanning reproduction and hair growth and thermo- to immunoregulation, a comprehensive understanding of the relationship between PRL and the skin remains frustratingly elusive. In an historical curiosity, the first hint that PRL could affect skin biology came from the observation of seborrhoea in patients with post-encephalitic Parkinsonism as a result of another global pandemic, encephalitis lethargica, at the beginning of the last century. As PRL is now being postulated as a potential immunomodulator for COVID-19 infection, it is perhaps timeous to re-examine this pluripotent hormone with cytokine-like properties in the cutaneous context, drawing together our understanding of the role of PRL in skin disease to illustrate how targeting PRL-mediated signalling may represent a novel strategy to treat a range of skin diseases and hair disorders.
Collapse
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany;
- Dermatological Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Shastri M, Sharma M, Sharma K, Sharma A, Minz RW, Dogra S, Chhabra S. Cutaneous-immuno-neuro-endocrine (CINE) system: A complex enterprise transforming skin into a super organ. Exp Dermatol 2024; 33:e15029. [PMID: 38429868 DOI: 10.1111/exd.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Skin is now emerging as a complex realm of three chief systems viz. immune system, nervous system, and endocrine system. The cells involved in their intricate crosstalk, namely native skin cells, intra-cutaneous immune cells and cutaneous sensory neurons have diverse origin and distinct functions. However, recent studies have explored their role beyond their pre-defined functional boundaries, such that the cells shun their traditional functions and adopt unconventional roles. For example, the native skin cells, apart from providing for basic structural framework of skin, also perform special immune functions and participate in extensive neuro-endocrine circuitry, which were traditionally designated as functions of cutaneous resident immune cells and sensory neurons respectively. At the cellular level, this unique collaboration is brought out by special molecules called neuromediators including neurotransmitters, neuropeptides, neurotrophins, neurohormones and cytokines/chemokines. While this intricate crosstalk is essential for maintaining cutaneous homeostasis, its disruption is seen in various cutaneous diseases. Recent study models have led to a paradigm shift in our understanding of pathophysiology of many such disorders. In this review, we have described in detail the interaction of immune cells with neurons and native skin cells, role of neuromediators, the endocrine aspect in skin and current understanding of cutaneous neuro-immuno-endocrine loop in one of the commonest skin diseases, psoriasis. An accurate knowledge of this unique crosstalk can prove crucial in understanding the pathophysiology of different skin diseases and allow for generation of targeted therapeutic modalities.
Collapse
Affiliation(s)
- Malvika Shastri
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head & Neck Surgery, Nehru Extension Block, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ayush Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Barrea L, Cacciapuoti S, Megna M, Verde L, Marasca C, Vono R, Camajani E, Colao A, Savastano S, Fabbrocini G, Muscogiuri G. The effect of the ketogenic diet on Acne: Could it be a therapeutic tool? Crit Rev Food Sci Nutr 2023; 64:6850-6869. [PMID: 36779329 DOI: 10.1080/10408398.2023.2176813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Acne is a chronic inflammatory disease of the pilosebaceous unit resulting from androgen-induced increased sebum production, altered keratinization, inflammation, and bacterial colonization of the hair follicles of the face, neck, chest and back by Propionibacterium acnes. Overall, inflammation and immune responses are strongly implicated in the pathogenesis of acne. Although early colonization with Propionibacterium acnes and family history may play an important role in the disease, it remains unclear exactly what triggers acne and how treatment affects disease progression. The influence of diet on acne disease is a growing research topic, yet few studies have examined the effects of diet on the development and clinical severity of acne disease, and the results have often been contradictory. Interestingly, very low-calorie ketogenic diet (VLCKD) has been associated with both significant reductions in body weight and inflammatory status through the production of ketone bodies and thus it has been expected to reduce the exacerbation of clinical manifestations or even block the trigger of acne disease. Given the paucity of studies regarding the implementation of VLCKD in the management of acne, this review aims to provide evidence from the available scientific literature to support the speculative use of VLCKD in the treatment of acne.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Sara Cacciapuoti
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Matteo Megna
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Marasca
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" Via Mariano Semmola, Napoli, Italy
| | | | - Elisabetta Camajani
- PhD Programme in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
5
|
Borzyszkowska D, Niedzielska M, Kozłowski M, Brodowska A, Przepiera A, Malczyk-Matysiak K, Cymbaluk-Płoska A, Sowińska-Przepiera E. Evaluation of Hormonal Factors in Acne Vulgaris and the Course of Acne Vulgaris Treatment with Contraceptive-Based Therapies in Young Adult Women. Cells 2022; 11:4078. [PMID: 36552842 PMCID: PMC9777314 DOI: 10.3390/cells11244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease, which is considered one of the diseases of civilization due to the significant influence of environmental factors on the severity and frequency of these lesions. The aim of this study was to evaluate the hormonal profile of patients before treatment and to assess selected hormonal parameters after treatment. Our first objective was to examine the correlation between the selected hormonal parameters and the severity of acne before treatment. Our second objective was to evaluate the impact of treatment with three therapies, as measured by the selected hormonal parameters and acne severity. Statistical calculations were performed using the R v.4.1.1 statistical calculation environment (IDE RStudio v. 1.4.1717) with a significance level for the statistical tests set at α = 0.05. The results showed that the women in the pre-treatment (T1) and control (C) groups had significant differences in testosterone, androstendione, FAI, SHBG, prolactin, ACTH, and cortisol concentrations. After treatment, there were still significant differences in testosterone, androstendione, FAI, and SHBG concentrations between the post-treatment (T2) and control groups. We concluded that testosterone, androstendione, and cortisol concentrations correlate with acne severity. Acne in adult women may be an important clinical marker of androgen excess syndrome and cannot be considered a transient symptom of puberty. The mainstay of acne treatment is contraceptive therapy (ethonylestradiol and drospirenone). In this study, we confirmed the effectiveness of three contraceptive-based treatments using hormonal parameters and acne severity.
Collapse
Affiliation(s)
- Dominika Borzyszkowska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mirela Niedzielska
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Adam Przepiera
- Department of Urology and Urologic Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Kinga Malczyk-Matysiak
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| |
Collapse
|
6
|
Hu T, Wei Z, Ju Q, Chen W. Sexualhormone und Akne: Aktueller Stand. J Dtsch Dermatol Ges 2021; 19:509-516. [PMID: 33861017 DOI: 10.1111/ddg.14426_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Hu
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ziyu Wei
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Qiang Ju
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - WenChieh Chen
- Abteilung Dermatologie und Allergologie, Technische Universität München, München, Germany
| |
Collapse
|
7
|
Hu T, Wei Z, Ju Q, Chen W. Sex hormones and acne: State of the art. J Dtsch Dermatol Ges 2021; 19:509-515. [PMID: 33576151 DOI: 10.1111/ddg.14426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
Acne is an androgen-dependent inflammatory disease of sebaceous follicles. Herein, we reviewed and discussed the underlying pathways of androgen biosynthesis and metabolism, non-genomic regulation of androgen receptor expression and function, posttranslational regulation of androgen excess in acne and acne-associated syndromes, such as polycystic ovary syndrome, and congenital adrenal hyperplasia. We provide insights into the involvement of sex hormones, particularly androgens, in skin homeostasis and acne pathogenesis, including comedogenesis, lipogenesis, microbiota, and inflammation. Advanced understanding of the action mechanisms of classical acne treatment and new development of antiandrogens, both topical and systemic, are also highlighted.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziyu Wei
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - WenChieh Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
10
|
27 TH Fondation René Touraine Annual SCIENTIFIC MEETING 2019: Skin Appendages - Developmental and Pathophysiological Aspects. Exp Dermatol 2019; 28:1353-1367. [PMID: 31854035 DOI: 10.1111/exd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wikramanayake TC, Borda LJ, Miteva M, Paus R. Seborrheic dermatitis—Looking beyondMalassezia. Exp Dermatol 2019; 28:991-1001. [DOI: 10.1111/exd.14006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Luis J. Borda
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- NIHR Biomedical Research Centre Manchester UK
| |
Collapse
|
12
|
The renaissance of human skin organ culture: A critical reappraisal. Differentiation 2018; 104:22-35. [DOI: 10.1016/j.diff.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|