1
|
Vasan A, Kim S, Davis E, Roh DS, Eyckmans J. Advances in Designer Materials for Chronic Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40306934 DOI: 10.1089/wound.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Significance: Nonhealing or chronic wounds represent a significant and growing global health concern, imposing substantial burdens on individuals, health care systems, and economies worldwide. Although the standard-of-care treatment involves the application of wound dressings, most dressing materials are not specifically designed to address the pathological processes underlying chronic wounds. This review highlights recent advances in biomaterial design tailored to chronic wound healing. Recent Advances: Chronic wounds are characterized by persistent inflammation, impaired granulation tissue formation, and delayed re-epithelialization. Newly developed designer materials aim to manage reactive oxygen species and extracellular matrix degradation to suppress inflammation while promoting vascularization, cell proliferation, and epithelial migration to accelerate tissue repair. Critical Issues: Designing optimal materials for chronic wounds remains challenging due to the diverse etiology and a multitude of pathological mechanisms underlying chronic wound healing. While designer materials can target specific aberrations, designing a materials approach that restores all aberrant wound-healing processes remains the Holy Grail. Addressing these issues requires a deep understanding of how cells interact with the materials and the complex etiology of chronic wounds. Future Directions: New material approaches that target wound mechanics and senescence to improve chronic wound closure are under development. Layered materials combining the best properties of the approaches discussed in this review will pave the way for designer materials optimized for chronic wound healing.
Collapse
Affiliation(s)
- Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Suntae Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Emily Davis
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel S Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Gould LJ, Tomic-Canic M. A Call to Action: Adopting the New Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. J Invest Dermatol 2025:S0022-202X(25)00363-X. [PMID: 40261226 DOI: 10.1016/j.jid.2025.02.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 04/24/2025]
Affiliation(s)
- Lisa J Gould
- South Shore Hospital Center for Wound Healing, Weymouth, Massachusetts, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
3
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2025; 32:479-498.e8. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
4
|
Voorde WT, Wind S, Abdisalaam I, Mancini A, Linders F, Jansen MAA, Kolk TNVD, Burggraaf J, Rissmann R. A suction blister model to characterize epidermal wound healing and evaluate the efficacy of the topical wound healing agent INM-755 in healthy volunteers. Eur J Pharm Sci 2025; 204:106867. [PMID: 39084539 DOI: 10.1016/j.ejps.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Non-healing wounds represent a substantial medical burden with few effective treatments available. To address this challenge, we developed a novel epidermal wound healing model using suction blisters in healthy volunteers. This model allowed for the comprehensive assessment of wound healing dynamics and the evaluation of INM-755, a topical cream containing cannabinol, as a potential therapeutic agent. Two clinical studies were conducted: an observational study and an interventional study. In both studies, healthy volunteers underwent a suction blister procedure on their lower back, creating open epidermal wounds. Wound healing parameters were assessed using advanced imaging systems. Skin barrier function and perfusion were evaluated through trans epidermal water loss (TEWL) and dynamic optical coherence tomography (D-OCT), respectively. The observational study demonstrated the successful and reproducible induction of blisters and the removal of epidermal sheet, enabling quantifiable measurements of wound healing parameters over time. Re-epithelialization was observed, revealing recovery of skin barrier function and perfusion. In the interventional study, differences of treatments over time were quantified using the above-described techniques. Despite differences from disease-specific blistering, our developed model provides a valuable platform for studying wound healing mechanisms and assessing novel therapeutic interventions. The sensitivity to treatment effects demonstrated in our study underscores the potential utility of this model in early-phase clinical drug development programs targeting wound healing disorders.
Collapse
Affiliation(s)
- Wouter Ten Voorde
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Centre, Leiden, the Netherlands
| | - Selinde Wind
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Centre, Leiden, the Netherlands
| | - Ismahaan Abdisalaam
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Feeke Linders
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Centre, Leiden, the Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Centre, Leiden, the Netherlands; Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
5
|
Ojeh N, Vecin NM, Pastar I, Volk SW, Wilgus T, Griffiths S, Ramey‐Ward AN, Driver VR, DiPietro LA, Gould LJ, Tomic‐Canic M. The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. Wound Repair Regen 2025; 33:e13232. [PMID: 39639458 PMCID: PMC11621255 DOI: 10.1111/wrr.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Preclinical studies for wound healing disorders are an essential step in translating discoveries into therapies. Also, they are an integral component of initial safety screening and gaining mechanistic insights using an in vivo approach. Given the complexity of the wound healing process, existing guidelines for animal testing do not capture key information due to the inevitable variability in experimental design. Variations in study interpretation are increased by complexities associated with wound aetiology, wounding procedure, multiple treatment conditions, wound assessment, and analysis, as well as lack of acknowledgement of limitation of the model used. Yet, no standards exist to guide reporting crucial experimental information required to interpret results in translational studies of wound healing. Consistency in reporting allows transparency, comparative, and meta-analysis studies and avoids repetition and redundancy. Therefore, there is a critical and unmet need to standardise reporting for preclinical wound studies. To aid in reporting experimental conditions, The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines have now been created by the authors working with the Wound Care Collaborative Community (WCCC) GAPS group to provide a checklist and reporting template for the most frequently used preclinical models in support of development for human clinical trials for wound healing disorders. It is anticipated that the WRAHPS Guidelines will standardise comprehensive methods for reporting in scientific manuscripts and the wound healing field overall. This article is not intended to address regulatory requirements but is intended to provide general guidelines on important scientific considerations for such studies.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Preclinical and Health Sciences, Faculty of Medical SciencesThe University of the West IndiesBridgetownBarbados
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Traci Wilgus
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Vickie R. Driver
- School of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue RegenerationUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lisa J. Gould
- South Shore Hospital Center for Wound HealingWeymouthMassachusettsUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
6
|
Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability 2024; 33:104-115. [PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 03/17/2024]
Abstract
Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
Collapse
Affiliation(s)
- Norshamiza Abu Bakar
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - Nur Fatiha Ghazalli
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| |
Collapse
|
7
|
Gallagher KA, Mills JL, Armstrong DG, Conte MS, Kirsner RS, Minc SD, Plutzky J, Southerland KW, Tomic-Canic M. Current Status and Principles for the Treatment and Prevention of Diabetic Foot Ulcers in the Cardiovascular Patient Population: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e232-e253. [PMID: 38095068 PMCID: PMC11067094 DOI: 10.1161/cir.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite the known higher risk of cardiovascular disease in individuals with type 2 diabetes, the pathophysiology and optimal management of diabetic foot ulcers (DFUs), a leading complication associated with diabetes, is complex and continues to evolve. Complications of type 2 diabetes, such as DFUs, are a major cause of morbidity and mortality and the leading cause of major lower extremity amputation in the United States. There has recently been a strong focus on the prevention and early treatment of DFUs, leading to the development of multidisciplinary diabetic wound and amputation prevention clinics across the country. Mounting evidence has shown that, despite these efforts, amputations associated with DFUs continue to increase. Furthermore, due to increasing patient complexity of management secondary to comorbid conditions, such as cardiovascular disease, the management of peripheral artery disease associated with DFUs has become increasingly difficult, and care delivery is often episodic and fragmented. Although structured, process-specific approaches exist at individual institutions for the management of DFUs in the cardiovascular patient population, there is insufficient awareness of these principles in the general medicine communities. Furthermore, there is growing interest in better understanding the mechanistic underpinnings of DFUs to better define personalized medicine to improve outcomes. The goals of this scientific statement are to provide salient background information on the complex pathogenesis and current management of DFUs in cardiovascular patients, to guide therapeutic and preventive strategies and future research directions, and to inform public policy makers on health disparities and other barriers to improving and advancing care in this expanding patient population.
Collapse
|
8
|
Ten Voorde W, Saghari M, Boltjes J, de Kam ML, Zhuparris A, Feiss G, Buters TP, Prens EP, Damman J, Niemeyer-van der Kolk T, Moerland M, Burggraaf J, van Doorn MBA, Rissmann R. A multimodal, comprehensive characterization of a cutaneous wound model in healthy volunteers. Exp Dermatol 2023. [PMID: 37051698 DOI: 10.1111/exd.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Development of pharmacological interventions for wound treatment is challenging due to both poorly understood wound healing mechanisms and heterogeneous patient populations. A standardized and well-characterized wound healing model in healthy volunteers is needed to aid in-depth pharmacodynamic and efficacy assessments of novel compounds. The current study aims to objectively and comprehensively characterize skin punch biopsy-induced wounds in healthy volunteers with an integrated, multimodal test battery. Eighteen (18) healthy male and female volunteers received three biopsies on the lower back, which were left to heal without intervention. The wound healing process was characterized using a battery of multimodal, non-invasive methods as well as histology and qPCR analysis in re-excised skin punch biopsies. Biophysical and clinical imaging read-outs returned to baseline values in 28 days. Optical coherence tomography detected cutaneous differences throughout the wound healing progression. qPCR analysis showed involvement of proteins, quantified as mRNA fold increase, in one or more healing phases. All modalities used in the study were able to detect differences over time. Using multidimensional data visualization, we were able to create a distinction between wound healing phases. Clinical and histopathological scoring were concordant with non-invasive imaging read-outs. This well-characterized wound healing model in healthy volunteers will be a valuable tool for the standardized testing of novel wound healing treatments.
Collapse
Affiliation(s)
- Wouter Ten Voorde
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Jiry Boltjes
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | - Gary Feiss
- Cutanea Life Sciences, Wayne, Pennsylvania, USA
| | - Thomas P Buters
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Errol P Prens
- Department of Dermatology Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Jeffrey Damman
- Department of Pathology Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
9
|
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular Pathophysiology of Chronic Wounds: Current State and Future Directions. Cold Spring Harb Perspect Biol 2023; 15:a041243. [PMID: 36123031 PMCID: PMC10024648 DOI: 10.1101/cshperspect.a041243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Venous leg ulcers, diabetic foot ulcers, and pressure ulcers are complex chronic wounds with multifactorial etiologies that are associated with high patient morbidity and mortality. Despite considerable progress in deciphering the pathologies of chronic wounds using "omics" approaches, considerable gaps in knowledge remain, and current therapies are often not efficacious. We provide a comprehensive overview of current understanding of the molecular mechanisms that impair healing and current knowledge on cell-specific dysregulation including keratinocytes, fibroblasts, immune cells, endothelial cells and their contributions to impaired reepithelialization, inflammation, angiogenesis, and tissue remodeling that characterize chronic wounds. We also provide a rationale for further elucidation of ulcer-specific pathologic processes that can be therapeutically targeted to shift chronic nonhealing to acute healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Nathan C Balukoff
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| |
Collapse
|
10
|
Peri-implantation tissue reactions during the insertion of contaminated implants with a composite antibacterial coating. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2023. [DOI: 10.17816/2311-2905-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background. Protection against microbial colonization of surface fixators for osteosynthesis reduces the number of infectious complications.
The aim of the study was to assess the biological compatibility of implants with a composite antibacterial coating under microbial load.
Methods. Fragments of steel carpal pins with four-component antimicrobial coating based on polylactide, polyurethane, ciprofloxacin and silver nanoparticles were contaminated by methicillin resistant Staphylococcus aureus. They were implanted in rats within the quadriceps femoris. Contaminated uncoated pins were used as a control. The animals were withdrawn from the experiment on the 2nd, 4th, 7th day after implantation. Pathohistological tissue specimens of the periimplantation zone were prepared. A semiquantitative assessment of periimplantation tissue reactions was performed.
Results. The microbial load was (1,120,26)*106 S. aureus cells for the control implants and (0,860,31)*106 cells for implants with antibacterial coating. Tissue inflammatory reactions on the second day of implantation were equally evident in the control and investigated groups. There was a significant reduction in the number of immune cells and necrotic detritus, as well as increased growth of connective tissue and neoangiogenesis in the experimental group by the 4th day. The appearance of a less pronounced well-vascularized fibrous capsule around the experimental implants was noted by the 7th day. It indicates a more favorable healing of soft tissues in comparison with the control.
Conclusions. Weak morphological manifestations of tissue reactions in response to the fitting of contaminated implants with an antibacterial coating can be associated with both the direct antimicrobial effect of the coating components and the anti-inflammatory activity of silver nanoparticles and ciprofloxacin included in its composition.
Keywords: implants, antibacterial coating, ciprofloxacin, silver nanoparticles, Staphylococcus aureus, contamination, tissue reactions.
Collapse
|
11
|
Jones TL, Holmes CM, Katona A, Martin CL, Niewczas MA, Pop-Busui R, Schmidt BM, Sen CK, Tomic-Canic M, Veves A. The NIDDK Diabetic Foot Consortium. J Diabetes Sci Technol 2023; 17:7-14. [PMID: 36059271 PMCID: PMC9846389 DOI: 10.1177/19322968221121152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Diabetic Foot Consortium (DFC) was established in September 2018 by the NIDDK to build an organization to facilitate the highest quality of clinical research on diabetic foot ulcers (DFUs) that will answer clinically significant questions to improve DFU healing and prevent amputations. The initial focus of the DFC is to develop and validate biomarkers for DFUs that can be used in clinical care and research. The DFC consists of a data coordinating center (DCC) for operational oversight and statistical analysis, clinical sites for participant recruitment and evaluation, and biomarker analysis units (BAUs). The DFC is currently studying biomarkers to predict wound healing and recurrence and is collecting biosamples for future studies through a biorepository. The DFC plans to address the challenges of recruitment and eligibility criteria for DFU clinical trials by taking an approach of "No DFU Patient Goes Unstudied." In this platform approach, clinical history, DFU outcome, wound imaging, and biologic measurements from a large number of patients will be captured and the in-depth longitudinal data set will be analyzed to develop a computational-based DFU risk factor profile to facilitate scientifically sound clinical trial design. The DFC will expand its platform to include studies of the role of social determinants of health, such as food insecurity, housing instability, limited health literacy, and poor social support. The DFC is starting partnerships with the broad group of stakeholders in the wound care community.
Collapse
Affiliation(s)
- Teresa L.Z. Jones
- National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | | | - Aimee Katona
- University of Michigan Medical
School, Ann Arbor, MI, USA
| | | | - Monika A. Niewczas
- Section on Genetics and
Epidemiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA,
USA
| | | | | | - Chandan K. Sen
- Indiana University School of
Medicine and Indiana University Health Comprehensive Wound Center,
Indianapolis, IN, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative
Medicine Research Program, University of Miami Miller School of Medicine,
Miami, FL, USA
| | - Aristidis Veves
- The Rongxiang Xu, MD, Center for
Regenerative Therapeutics, Joslin-Beth Israel Deaconess Foot Center, Beth
Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
12
|
Liu Z, Zhang L, Toma MA, Li D, Bian X, Pastar I, Tomic-Canic M, Sommar P, Xu Landén N. Integrative small and long RNA omics analysis of human healing and nonhealing wounds discovers cooperating microRNAs as therapeutic targets. eLife 2022; 11:80322. [PMID: 35942686 PMCID: PMC9374442 DOI: 10.7554/elife.80322] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miR), as important epigenetic control factors, reportedly regulate wound repair. However, our insufficient knowledge of clinically relevant miRs hinders their potential therapeutic use. For this, we performed paired small and long RNA-sequencing and integrative omics analysis in human tissue samples, including matched skin and acute wounds collected at each healing stage and chronic nonhealing venous ulcers (VUs). On the basis of the findings, we developed a compendium (https://www.xulandenlab.com/humanwounds-mirna-mrna), which will be an open, comprehensive resource to broadly aid wound healing research. With this first clinical, wound-centric resource of miRs and mRNAs, we identified 17 pathologically relevant miRs that exhibited abnormal VU expression and displayed their targets enriched explicitly in the VU gene signature. Intermeshing regulatory networks controlled by these miRs revealed their high cooperativity in contributing to chronic wound pathology characterized by persistent inflammation and proliferative phase initiation failure. Furthermore, we demonstrated that miR-34a, miR-424, and miR-516, upregulated in VU, cooperatively suppressed keratinocyte migration and growth while promoting inflammatory response. By combining miR expression patterns with their specific target gene expression context, we identified miRs highly relevant to VU pathology. Our study opens the possibility of developing innovative wound treatment that targets pathologically relevant cooperating miRs to attain higher therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Evaluation of Soft Tissue Regenerative Processes After Subcutaneous Implantation of Silver/ Poly(Vinyl Alcohol) and Novel Silver/Poly(Vinyl Alcohol)/Graphene Hydrogels in an Animal Model. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
A newly produced biomaterial is necessarily subject of standards, which are performed in vivo on animal models. For the evaluation of soft tissue regenerative possibilities after subcutaneous implantation of biomaterials – silver/poly(vinyl alcohol) (Ag/PVA) and novel silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) provided for clinical use, sixteen rats were used, according to the instructions of international standards, ISO 10993-6, 2007. Histological sections were observed 7, 15, 30 and 60 days after grafting. These hydrogels were produced by in situ electrochemical synthesis of silver nanoparticles in the polymer matrices, which enabled obtaining completely safe and biocompatible materials, free from any additional toxic chemical reducing agents. Surgical implantation of hydrogels was done according to the permission of the Ethical Committee of the Faculty of Veterinary Medicine, University of Belgrade. Immunohistochemical (IHC) studies included the assessment of smooth muscle expression actin in blood vessels (α-SMA), the expression of laminin and type I and type III collagen in the skin structures, and, the determination of cell proliferation marker expression (Ki-67) keratinocytes. The results were assessed in a semiquantitative manner. The data were analyzed in the statistical software package IBM SPSS 20. The conclusions indicated that Ag/PVA/Gr might be used as wound dressings to enhance the tissue healing potential and established faster integration and shorter retention in the tissue.
Collapse
|
14
|
Ajit A, Ambika Gopalankutty I. Adipose-derived stem cell secretome as a cell-free product for cutaneous wound healing. 3 Biotech 2021; 11:413. [PMID: 34476171 DOI: 10.1007/s13205-021-02958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds continue to be a substantial public health concern contributing to both humanistic and economic burden worldwide. The magnitude of chronic wounds as a global healthcare crisis is likely to increase due to the rising geriatric and diabetic population, demanding novel therapeutic approaches that can restore the functionality of the skin at a reduced cost. Stem cell therapy has been widely acknowledged as a promising strategy for the repair of damaged tissues due to its regenerative potential. This potential attributes to a concoction of bioactive molecules secreted by the stem cells, collectively called the secretome, that mediates paracrine and autocrine functions. Among the stem cell types, adipose tissue-derived mesenchymal stem cells (ADMSCs) have been receiving increased attention for its ease of isolation, abundance in tissue and notable impact on improving chronic wound healing. Owing to the reported advantages of cell-free preparations like the secretome over cellular products, developing secretome as a ready-to-use product for wound healing applications seems promising. In this review, we discuss the functional benefits of adipose stem cell secretome in wound healing, the techniques to enrich the secretome and the recommendations for the scale-up and commercialization of secretome products.
Collapse
Affiliation(s)
- Amita Ajit
- Scientific Consultant and Life Member, Kerala Academy of Sciences, Sasthra Bhavan, Pattom, Thiruvananthapuram, 695004 Kerala India
| | | |
Collapse
|
15
|
Saoudi M, Badraoui R, Chira A, Saeed M, Bouali N, Elkahoui S, Alam JM, Kallel C, El Feki A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules 2021; 26:4875. [PMID: 34443463 PMCID: PMC8398921 DOI: 10.3390/molecules26164875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
- Section of Histology and Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1007, Tunisia
| | - Ahlem Chira
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Mohd Saeed
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Nouha Bouali
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Salem Elkahoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Jahoor M. Alam
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Choumous Kallel
- Hematology Laboratory, Hospital Habib Bourguiba, Sfax 3029, Tunisia;
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| |
Collapse
|
16
|
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother 2021; 142:111946. [PMID: 34339915 DOI: 10.1016/j.biopha.2021.111946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | | |
Collapse
|
17
|
El-Ashram S, El-Samad LM, Basha AA, El Wakil A. Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacol Res 2021; 170:105749. [PMID: 34214630 DOI: 10.1016/j.phrs.2021.105749] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
This review summarizes the four processes of wound healing in the human body (hemostasis, inflammatory, proliferation, and remodeling) and the most current research on the most important factors affecting cutaneous wound healing and the underlying cellular and/or molecular pathways. Local factors, including temperature, oxygenation, and infection, and systemic factors, such as age, diabetes, sex hormones, genetic components, autoimmune diseases, psychological stress, smoking and obesity are also addressed. A better understanding of the role of these factors in wound repair could result in the development of therapeutics that promote wound healing and resolve affected wounds. Additionally, natural products obtained from plants and animals are critical targets for the discovery of novel biologically significant pharmacophores, such as medicines and agrochemicals. This review outlines the most recent advances in naturally derived targeted treatment for wound healing. These are plant-derived natural products, insect-derived natural products, marine-derived natural products, nanomaterial-based wound-healing therapeutics (metal- and non-metal-based nanoparticles), and natural product-based nanomedicine to improve the future direction of wound healing. Natural products extracted from plants and animals have advanced significantly, particularly in the treatment of wound healing. As a result, the isolation and extraction of bioactive compounds from a variety of sources can continue to advance our understanding of wound healing. Undescribed bioactive compounds or unexplored formulations that could have a role in today's medicinal arsenal may be contained in the abundance of natural products and natural product derivatives.
Collapse
Affiliation(s)
- Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
18
|
Villalba-Rodríguez AM, Martínez-González S, Sosa-Hernández JE, Parra-Saldívar R, Bilal M, Iqbal HMN. Nanoclay/Polymer-Based Hydrogels and Enzyme-Loaded Nanostructures for Wound Healing Applications. Gels 2021; 7:59. [PMID: 34068868 PMCID: PMC8162325 DOI: 10.3390/gels7020059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Multi-polymeric nanocomposite hydrogels with multi-functional characteristics have been engineered with high interest around the globe. The ease in fine tunability with maintained compliance makes an array of nanocomposite biomaterials outstanding candidates for the biomedical sector of the modern world. In this context, the present work intends to tackle the necessity of alternatives for the treatment of diabetic foot ulcers through the formulation of nanoclay and/or polymer-based nanocomposite hydrogels. Laponite RD, a synthetic 2-D nanoclay that becomes inert when in a physiological environment, while mixed with water, becomes a clear gel with interesting shear-thinning properties. Adding Laponite RD to chitosan or gelatin allows for the modification of the mechanical properties of such materials. The setup explored in this research allows for a promising polymeric matrix that can potentially be loaded with active compounds for antibacterial support in foot ulcers, as well as enzymes for wound debridement.
Collapse
Affiliation(s)
- Angel M. Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (A.M.V.-R.); (S.M.-G.); (J.E.S.-H.); (R.P.-S.)
| | - Sara Martínez-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (A.M.V.-R.); (S.M.-G.); (J.E.S.-H.); (R.P.-S.)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (A.M.V.-R.); (S.M.-G.); (J.E.S.-H.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (A.M.V.-R.); (S.M.-G.); (J.E.S.-H.); (R.P.-S.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (A.M.V.-R.); (S.M.-G.); (J.E.S.-H.); (R.P.-S.)
| |
Collapse
|
19
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
20
|
Abstract
Numerous individuals suffer from impaired wound healing, such as chronic ulcers, severe burns and immune disorders, resulting in both public health and economic burdens. Skin is the first line of defense and the largest organ of the human body, however, an incomplete understanding of underlying cellular and molecular mechanisms of dermal repair leads to a lack of effective therapy for healing impaired wounds. There are strong clinical and social needs for improved therapeutic approaches to enhance endogenous tissue repair and regenerative capacity. The purpose of this review is to illuminate the cellular and molecular aspects of the healing process and highlight potential therapeutic strategies to accelerate translational research and the development of clinical therapies in dermal wounds.
Collapse
Affiliation(s)
- Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiangjun Bai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaojing Dai
- MD Anderson Cancer Center, The Advanced Technology Genomics Core, Houston, TX 77030, USA
| | - Yong Li
- Department of Orthopedic Surgery & Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
21
|
De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021; 9:353. [PMID: 33670115 PMCID: PMC7916842 DOI: 10.3390/microorganisms9020353] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Lynda Grine
- Department of Head & Skin, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Melanie Debaere
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Aglaya Maes
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | | | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| |
Collapse
|
22
|
Transcriptomic Analysis of a Diabetic Skin-Humanized Mouse Model Dissects Molecular Pathways Underlying the Delayed Wound Healing Response. Genes (Basel) 2020; 12:genes12010047. [PMID: 33396192 PMCID: PMC7824036 DOI: 10.3390/genes12010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Defective healing leading to cutaneous ulcer formation is one of the most feared complications of diabetes due to its consequences on patients' quality of life and on the healthcare system. A more in-depth analysis of the underlying molecular pathophysiology is required to develop effective healing-promoting therapies for those patients. Major architectural and functional differences with human epidermis limit extrapolation of results coming from rodents and other small mammal-healing models. Therefore, the search for reliable humanized models has become mandatory. Previously, we developed a diabetes-induced delayed humanized wound healing model that faithfully recapitulated the major histological features of such skin repair-deficient condition. Herein, we present the results of a transcriptomic and functional enrichment analysis followed by a mechanistic analysis performed in such humanized wound healing model. The deregulation of genes implicated in functions such as angiogenesis, apoptosis, and inflammatory signaling processes were evidenced, confirming published data in diabetic patients that in fact might also underlie some of the histological features previously reported in the delayed skin-humanized healing model. Altogether, these molecular findings support the utility of such preclinical model as a valuable tool to gain insight into the molecular basis of the delayed diabetic healing with potential impact in the translational medicine field.
Collapse
|
23
|
Raffetto JD, Ligi D, Maniscalco R, Khalil RA, Mannello F. Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment. J Clin Med 2020; 10:jcm10010029. [PMID: 33374372 PMCID: PMC7795034 DOI: 10.3390/jcm10010029] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50-70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals.
Collapse
Affiliation(s)
- Joseph D. Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (J.D.R.); (F.M.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
- Correspondence: (J.D.R.); (F.M.)
| |
Collapse
|
24
|
Resnik SR, Egger A, Abdo Abujamra B, Jozic I. Clinical Implications of Cellular Senescence on Wound Healing. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00320-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Shao H, Li Y, Pastar I, Xiao M, Prokupets R, Liu S, Yu K, Vazquez-Padron RI, Tomic-Canic M, Velazquez OC, Liu ZJ. Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds. Life Sci Alliance 2020; 3:3/12/e202000769. [PMID: 33109684 PMCID: PMC7652398 DOI: 10.26508/lsa.202000769] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts play a pivotal role in wound healing. However, the molecular mechanisms determining the reparative response of fibroblasts remain unknown. Here, we identify Notch1 signaling as a molecular determinant controlling the plasticity and function of fibroblasts in modulating wound healing and angiogenesis. The Notch pathway is activated in fibroblasts of diabetic wounds but not in normal skin and non-diabetic wounds. Consistently, wound healing in the FSP-1 +/- ;ROSA LSL-N1IC+/+ mouse, in which Notch1 is activated in fibroblasts, is delayed. Increased Notch1 activity in fibroblasts suppressed their growth, migration, and differentiation into myofibroblasts. Accordingly, significantly fewer myofibroblasts and less collagen were present in granulation tissues of the FSP-1 +/- ;ROSA LSL-N1IC+/+ mice, demonstrating that high Notch1 activity inhibits fibroblast differentiation. High Notch1 activity in fibroblasts diminished their role in modulating the angiogenic response. We also identified that IL-6 is a functional Notch1 target and involved in regulating angiogenesis. These findings suggest that Notch1 signaling determines the plasticity and function of fibroblasts in wound healing and angiogenesis, unveiling intracellular Notch1 signaling in fibroblasts as potential target for therapeutic intervention in diabetic wound healing.
Collapse
Affiliation(s)
- Hongwei Shao
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Yan Li
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Min Xiao
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rochelle Prokupets
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Sophia Liu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Kerstin Yu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | | | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Zhao-Jun Liu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
26
|
Sun H, Pulakat L, Anderson DW. Challenges and New Therapeutic Approaches in the Management of Chronic Wounds. Curr Drug Targets 2020; 21:1264-1275. [PMID: 32576127 DOI: 10.2174/1389450121666200623131200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are estimated to cost the US healthcare $28-$31 billion per year. Diabetic ulcers, arterial and venous ulcers, and pressure ulcers are some of the most common types of chronic wounds. The burden of chronic wounds continues to rise due to the current epidemic of obesity and diabetes and the increase in elderly adults in the population who are more vulnerable to chronic wounds than younger individuals. This patient population is also highly vulnerable to debilitating infections caused by opportunistic and multi-drug resistant pathogens. Reduced microcirculation, decreased availability of cytokines and growth factors that promote wound closure and healing, and infections by multi-drug resistant and biofilm forming microbes are some of the critical factors that contribute to the development of chronic non-healing wounds. This review discusses novel approaches to understand chronic wound pathology and methods to improve chronic wound care, particularly when chronic wounds are infected by multi-drug resistant, biofilm forming microbes.
Collapse
Affiliation(s)
- Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | - Lakshmi Pulakat
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | | |
Collapse
|
27
|
Sawaya AP, Stone RC, Brooks SR, Pastar I, Jozic I, Hasneen K, O'Neill K, Mehdizadeh S, Head CR, Strbo N, Morasso MI, Tomic-Canic M. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun 2020; 11:4678. [PMID: 32938916 PMCID: PMC7495445 DOI: 10.1038/s41467-020-18276-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are a life-threatening disease that often result in lower limb amputations and a shortened lifespan. However, molecular mechanisms contributing to the pathogenesis of DFUs remain poorly understood. We use next-generation sequencing to generate a human dataset of pathogenic DFUs to compare to transcriptional profiles of human skin and oral acute wounds, oral as a model of “ideal” adult tissue repair due to accelerated closure without scarring. Here we identify major transcriptional networks deregulated in DFUs that result in decreased neutrophils and macrophages recruitment and overall poorly controlled inflammatory response. Transcription factors FOXM1 and STAT3, which function to activate and promote survival of immune cells, are inhibited in DFUs. Moreover, inhibition of FOXM1 in diabetic mouse models (STZ-induced and db/db) results in delayed wound healing and decreased neutrophil and macrophage recruitment in diabetic wounds in vivo. Our data underscore the role of a perturbed, ineffective inflammatory response as a major contributor to the pathogenesis of DFUs, which is facilitated by FOXM1-mediated deregulation of recruitment of neutrophils and macrophages, revealing a potential therapeutic strategy. Diabetic foot ulcers (DFU) represent a complex disease with limited treatment options. Here, the authors compare human RNASeq patient data from DFU, oral mucosa and skin acute wounds, identifying FOXM1 as a mediator of macrophage and neutrophil recruitment, which contributes to disease pathogenesis and is dysregulated in patients.
Collapse
Affiliation(s)
- Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Katelyn O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Spencer Mehdizadeh
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA.
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
28
|
Abstract
The skin microbiota is intimately coupled with cutaneous health and disease. Interactions between commensal microbiota and the multiple cell types involved in cutaneous wound healing regulate the immune response and promote barrier restoration. This dialog between host cells and the microbiome is dysregulated in chronic wounds. In this review, we first describe how advances in sequencing approaches and analysis have been used to study the chronic wound microbiota, and how these findings underscored the complexity of microbial communities and their association with clinical outcomes in patients with chronic wound disorders. We also discuss the mechanistic insights gathered from multiple animal models of polymicrobial wound infections. In addition to the well-described role of bacteria residing in polymicrobial biofilms, we also discuss the role of the intracellular bacterial niche in wound healing. We describe how, in contrast to pathogenic species capable of subverting skin immunity, commensals are essential for the regulation of the cutaneous immune system and provide protection from intracellular pathogens through modulation of the antimicrobial molecule, Perforin-2. Despite recent advances, more research is needed to shed light on host-microbiome crosstalk in both healing and nonhealing chronic wounds to appropriately guide therapeutic developments.
Collapse
Affiliation(s)
- Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Jamie L Burgess
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Katelyn E O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA.
| |
Collapse
|
29
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune Cell Therapies to Improve Regeneration and Revascularization of Non-Healing Wounds. Int J Mol Sci 2020; 21:E5235. [PMID: 32718071 PMCID: PMC7432547 DOI: 10.3390/ijms21155235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.
Collapse
Affiliation(s)
- Elena Groppa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tea Kocijan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
31
|
Wang Z, Shi C. Cellular senescence is a promising target for chronic wounds: a comprehensive review. BURNS & TRAUMA 2020; 8:tkaa021. [PMID: 32607375 PMCID: PMC7309580 DOI: 10.1093/burnst/tkaa021] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds include, but are not limited to, radiation ulcers, pressure ulcers, vascular ulcers and diabetic foot ulcers. These chronic wounds can persist for years without healing and severe ulcers may lead to amputation. Unfortunately, the underlying pathologies of refractory chronic wounds are not fully characterized, and new treatments are urgently needed. Recently, increasing evidence has indicated that cell senescence plays an important role in the development of chronic wounds, and preventing cell senescence or removing senescent cells holds promise as a new therapeutic strategy. In this review, we aim to probe these latest findings to promote the understanding of cellular senescence in the pathological process and potential management of chronic wounds.
Collapse
Affiliation(s)
- Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| |
Collapse
|
32
|
Thyroxine restores severely impaired cutaneous re-epithelialisation and angiogenesis in a novel preclinical assay for studying human skin wound healing under "pathological" conditions ex vivo. Arch Dermatol Res 2020; 313:181-192. [PMID: 32572565 PMCID: PMC7935818 DOI: 10.1007/s00403-020-02092-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/14/2020] [Accepted: 03/28/2020] [Indexed: 01/18/2023]
Abstract
Impaired cutaneous wound healing remains a major healthcare challenge. The enormity of this challenge is compounded by the lack of preclinical human skin wound healing models that recapitulate selected key factors underlying impaired healing, namely hypoxia/poor tissue perfusion, oxidative damage, defective innervation, and hyperglycaemia. Since organ-cultured human skin already represents a denervated and impaired perfusion state, we sought to further mimic “pathological” wound healing conditions by culturing experimentally wounded, healthy full-thickness frontotemporal skin from three healthy female subjects for three days in either serum-free supplemented Williams’ E medium or in unsupplemented medium under “pathological” conditions (i.e. hypoxia [5% O2], oxidative damage [10 mM H2O2], absence of insulin, excess glucose). Under these “pathological” conditions, dermal–epidermal split formation and dyskeratosis were prominent in organ-cultured human skin, and epidermal reepithelialisation was significantly impaired (p < 0.001), associated with reduced keratinocyte proliferation (p < 0.001), cytokeratin 6 expression (p < 0.001) and increased apoptosis (p < 0.001). Moreover, markers of intracutaneous angiogenesis (CD31 immunoreactivity and the number of of CD31 positive cells and CD31 positive vessel lumina) were significantly reduced. Since we had previously shown that thyroxine promotes wound healing in healthy human skin ex vivo, we tested whether this in principle also occurs under “pathological” wound healing conditions. Indeed, thyroxine administration sufficed to rescue re-epithelialisation (p < 0.001) and promoted both epidermal keratinocyte proliferation (p < 0.01) and angiogenesis in terms of CD31 immunoreactivity and CD31 positive cells under “pathological” conditions (p < 0.001) ex vivo. This demonstrates the utility of this pragmatic short-term ex vivo model, which recapitulates some key parameters of impaired human skin wound healing, for the preclinical identification of promising wound healing promoters.
Collapse
|
33
|
Ashrafi M, Xu Y, Muhamadali H, White I, Wilkinson M, Hollywood K, Baguneid M, Goodacre R, Bayat A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS One 2020; 15:e0229545. [PMID: 32106276 PMCID: PMC7046225 DOI: 10.1371/journal.pone.0229545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 01/13/2023] Open
Abstract
Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS. PCA of wound tissue metabolome clearly separated time points with 10 metabolites of 346 being involved in separation. Analysis of variance-simultaneous component analysis identified a statistical difference between the wound headspace metabolome, sites (P = 0.0024) and time points (P<0.0001), with 10 out of the 129 metabolites measured involved with this separation between sites and time points. A reciprocal relationship between Staphylococcus spp. and Propionibacterium spp. was observed at day 21 (P<0.05) with a statistical correlation between collagen and Propionibacterium (r = 0.417; P = 0.038) and Staphylococcus (r = -0.434; P = 0.03). Procrustes analysis showed a statistically significant similarity between wound headspace and tissue metabolome with non-invasive wound devices. This exploratory study demonstrates the temporal and dynamic nature of acute wound metabolome and microbiome presenting a novel class of biomarkers that correspond to wound healing, with further confirmatory studies now necessary.
Collapse
Affiliation(s)
- Mohammed Ashrafi
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Iain White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Katherine Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mohamed Baguneid
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Davis SC, Pastar I. Reply to "Questioning the use of an acute porcine wound model to assess anti-biofilm activity of dressings". Wound Repair Regen 2020; 28:429-430. [PMID: 32011777 DOI: 10.1111/wrr.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen C Davis
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
35
|
Castellanos A, Hernandez MG, Tomic-Canic M, Jozic I, Fernandez-Lima F. Multimodal, in Situ Imaging of Ex Vivo Human Skin Reveals Decrease of Cholesterol Sulfate in the Neoepithelium during Acute Wound Healing. Anal Chem 2019; 92:1386-1394. [PMID: 31789498 DOI: 10.1021/acs.analchem.9b04542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skin repair is a significant aspect of human health. While the makeup of healthy stratum corneum and epidermis is generally understood, the mobilization of molecular components during skin repair remains largely unknown. In the present work, we utilize multimodal, in situ, mass spectrometry, and immunofluorescence imaging for the characterization of newly formed epidermis, following an initial acute wound for the first 96 h of epithelization. In particular, TOF-SIMS and confirmatory MALDI FT-ICR MS (/MS) analysis permitted the mapping of several lipid classes, including phospholipids, neutral lipids, cholesterol, ceramides, and free fatty acids. Endogenous lipid species were localized in discrete epidermal skin layers, including the stratum corneum (SC), stratum granulosum (SG), stratum basale (SB), and dermis. Experiments revealed that healthy re-epithelializing skin is characterized by diminished cholesterol sulfate signal along the stratum corneum toward the migrating epithelial tongue. The spatial distribution and relative abundances of cholesterol sulfate are reported and correlated with the healing time. The multimodal imaging approach enabled in situ high-confidence chemical mapping based on accurate mass and fragmentation pattern of molecular components. The use of postanalysis immunofluorescence imaging from the same tissue confirmed the localization of endogenous lipid species and Filaggrin and Cav-1 proteins at high spatial resolution (approximately a few microns).
Collapse
Affiliation(s)
- Anthony Castellanos
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States
| | - Mario Gomez Hernandez
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB 6056 , Miami , Florida 33136 , United States
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB 6056 , Miami , Florida 33136 , United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States.,Biomolecular Sciences Institute , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
36
|
Sawaya AP, Jozic I, Stone RC, Pastar I, Egger AN, Stojadinovic O, Glinos GD, Kirsner RS, Tomic-Canic M. Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling. JCI Insight 2019; 4:129320. [PMID: 31661463 DOI: 10.1172/jci.insight.129320] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a life-threatening disease that often results in lower limb amputations and a shortened life span. Current treatment options are limited and often not efficacious, raising the need for new therapies. To investigate the therapeutic potential of topical statins to restore healing in patients with DFUs, we performed next-generation sequencing on mevastatin-treated primary human keratinocytes. We found that mevastatin activated and modulated the EGF signaling to trigger an antiproliferative and promigratory phenotype, suggesting that statins may shift DFUs from a hyperproliferative phenotype to a promigratory phenotype in order to stimulate healing. Furthermore, mevastatin induced a migratory phenotype in primary human keratinocytes through EGF-mediated activation of Rac1, resulting in actin cytoskeletal reorganization and lamellipodia formation. Interestingly, the EGF receptor is downregulated in tissue biopsies from patients with DFUs. Mevastatin restored EGF signaling in DFUs through disruption of caveolae to promote keratinocyte migration, which was confirmed by caveolin-1 (Cav1) overexpression studies. We conclude that topical statins may have considerable therapeutic potential as a treatment option for patients with DFUs and offer an effective treatment for chronic wounds that can be rapidly translated to clinical use.
Collapse
Affiliation(s)
- Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and.,Molecular and Cellular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and
| | - Andjela N Egger
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and.,Immunology, Infection and Inflammation Graduate Program, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and.,Wound Healing Clinical Research Program, University of Miami Hospital, University of Miami Health System, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, and.,Molecular and Cellular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
37
|
Stone RC, Stojadinovic O, Sawaya AP, Glinos GD, Lindley LE, Pastar I, Badiavas E, Tomic-Canic M. A bioengineered living cell construct activates metallothionein/zinc/MMP8 and inhibits TGFβ to stimulate remodeling of fibrotic venous leg ulcers. Wound Repair Regen 2019; 28:164-176. [PMID: 31674093 DOI: 10.1111/wrr.12778] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Venous leg ulcers (VLU) represent a major clinical unmet need, impairing quality of life for millions worldwide. The bioengineered bilayered living cell construct (BLCC) is the only FDA-approved therapy demonstrating efficacy in healing chronic VLU, yet its in vivo mechanisms of action are not well understood. Previously, we reported a BLCC-mediated acute wounding response at the ulcer edge; in this study we elucidated the BLCC-specific effects on the epidermis-free ulcer bed. We conducted a randomized controlled clinical trial (ClinicalTrials.gov NCT01327937) enrolling 30 subjects with nonhealing VLUs, and performed genotyping, genomic profiling, and functional analysis on wound bed biopsies obtained at baseline and 1 week after treatment with BLCC plus compression or compression therapy (control). The VLU bed transcriptome featured processes of chronic inflammation and was strikingly enriched for fibrotic/fibrogenic pathways and gene networks. BLCC application decreased expression of profibrotic TGFß1 gene targets and increased levels of TGFß inhibitor decorin. Surprisingly, BLCC upregulated metallothioneins and fibroblast-derived MMP8 collagenase, and promoted endogenous release of MMP-activating zinc to stimulate antifibrotic remodeling, a novel mechanism of cutaneous wound healing. By activating a remodeling program in the quiescent VLU bed, BLCC application shifts nonhealing to healing phenotype. As VLU bed fibrosis correlates with poor clinical healing, findings from this study identify the chronic VLU as a fibrotic skin disease and are first to support the development and application of antifibrotic therapies as a successful treatment approach.
Collapse
Affiliation(s)
- Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida.,The Research Residency Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida.,Molecular and Cellular Pharmacology Graduate Program in Biomedical Sciences, University of Miami-Miller School of Medicine, Miami, Florida
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida
| | - Linsey E Lindley
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida
| | - Evangelos Badiavas
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida.,Interdisciplinary Stem Cell Institute, University of Miami-Miller School of Medicine, Miami, Florida
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, Florida.,John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, Florida
| |
Collapse
|
38
|
Parnell LK, Volk SW. The Evolution of Animal Models in Wound Healing Research: 1993-2017. Adv Wound Care (New Rochelle) 2019; 8:692-702. [PMID: 31827981 DOI: 10.1089/wound.2019.1098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Significance: Wound healing is a complex and dynamic series of events influenced by a variety of intrinsic and extrinsic factors. Problematic wounds, particularly chronic wounds and pathologic scars, remain clinically significant burdens. Modeling physiologic and aberrant wound repair processes using in vitro or in vivo models have contributed to Advances in Wound Care (AWC); however, the fidelity of each model used, particularly with respect to its species-specific limitations, must be taken into account for extrapolation to human patients. Twenty-five years of wound healing models published in Wound Repair and Regeneration (1993-2017) and AWC (2012-2017) were collected and analyzed to determine trends in species utilization and models used. Recent Advances: In 25 years, 1,521 original research articles utilizing one or more wound models were published (total of 1,665 models). Although 20 different species were used over the course of 25 years, 5 species were most commonly utilized: human, mouse, rat, pig, and rabbit. In vivo modeling was used most frequently, followed by in vitro, ex vivo, and in silico modeling of wound healing processes. Critical Issues: A comparison of articles from 1993 to 1997 and 2013 to 2017 periods showed notable differences in model and species usage. Experiments utilizing mouse and human models increased, while the usage of pig models remained constant, rabbit and rat models declined in the more recent time period examined compared to the time period two decades before. Future Directions: This analysis shows notable changes in types of models and species used over time which may be attributed to new knowledge, techniques, technology, and/or reagents. Explorations into mechanisms of limb regeneration and wound healing of noncutaneous tissues have also contributed to a shift in modeling over time. Changes within the journals (i.e., page expansion and increased rejection rates), research funding, and model expense may also influence the observed shifts.
Collapse
Affiliation(s)
| | - Susan W. Volk
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Jozic I, Sawaya AP, Pastar I, Head CR, Wong LL, Glinos GD, Wikramanayake TC, Brem H, Kirsner RS, Tomic-Canic M. Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Mol Ther 2019; 27:1992-2004. [PMID: 31409528 PMCID: PMC6838864 DOI: 10.1016/j.ymthe.2019.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds-including diabetic foot ulcers, venous leg ulcers, and pressure ulcers-represent a major health problem that demands an urgent solution and new therapies. Despite major burden to patients, health care professionals, and health care systems worldwide, there are no efficacious therapies approved for treatment of chronic wounds. One of the major obstacles in achieving wound closure in patients is the lack of epithelial migration. Here, we used multiple pre-clinical wound models to show that Caveolin-1 (Cav1) impedes healing and that targeting Cav1 accelerates wound closure. We found that Cav1 expression is significantly upregulated in wound edge biopsies of patients with non-healing wounds, confirming its healing-inhibitory role. Conversely, Cav1 was absent from the migrating epithelium and is downregulated in acutely healing wounds. Specifically, Cav1 interacted with membranous glucocorticoid receptor (mbGR) and epidermal growth factor receptor (EGFR) in a glucocorticoid-dependent manner to inhibit cutaneous healing. However, pharmacological disruption of caveolae by MβCD or CRISPR/Cas9-mediated Cav1 knockdown resulted in disruption of Cav1-mbGR and Cav1-EGFR complexes and promoted epithelialization and wound healing. Our data reveal a novel mechanism of inhibition of epithelialization and wound closure, providing a rationale for pharmacological targeting of Cav1 as potential therapy for patients with non-healing chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lulu L Wong
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tongyu Cao Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harold Brem
- Division of Wound Healing and Regenerative Medicine, Newark Beth Israel Medical Center, RWJBarnabas Health, Newark, NJ 07112, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Mehrvar S, Rymut KT, Foomani FH, Mostaghimi S, Eells JT, Ranji M, Gopalakrishnan S. Fluorescence Imaging of Mitochondrial Redox State to Assess Diabetic Wounds. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1800809. [PMID: 32166047 PMCID: PMC6889942 DOI: 10.1109/jtehm.2019.2945323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
Background: Diabetes is known to cause delayed wound healing, and
chronic non-healing lower extremity ulcers may end with lower limb amputations and
mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is
critical to focus on underlying mechanisms of these debilitating wounds to find novel
therapeutic strategies and thereby improve patient outcome. Methods: This
study aims to design a label-free optical fluorescence imager that captures metabolic
indices (NADH and FAD autofluorescence) and monitors the in vivo wound
healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial
redox state was utilized to assess the volumetric redox state of the wound tissue.
Results: The results from our in vivo fluorescence
imager and the 3D cryo-imager quantify the differences between the redox state of wounds
on diabetic mice in comparison with the control mice. These metabolic changes are
associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds.
A significant correlation was observed between the redox state and the area of the wounds.
Conclusion: The results suggest that our developed novel optical
imaging system can successfully be used as an optical indicator of the complex wound
healing process noninvasively.
Collapse
Affiliation(s)
- Shima Mehrvar
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Kevin T Rymut
- 2College of NursingUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Farnaz H Foomani
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Soudeh Mostaghimi
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Janis T Eells
- 3Department of Biomedical SciencesUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Mahsa Ranji
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | | |
Collapse
|
41
|
Natural Products and/or Isolated Compounds on Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4594965. [PMID: 31186659 PMCID: PMC6521374 DOI: 10.1155/2019/4594965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 11/17/2022]
|
42
|
Davis SC, Li J, Gil J, Head C, Valdes J, Glinos GD, Solis M, Higa A, Pastar I. Preclinical evaluation of a novel silver gelling fiber dressing on
Pseudomonas aeruginosa
in a porcine wound infection model. Wound Repair Regen 2019; 27:360-365. [DOI: 10.1111/wrr.12718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Stephen C. Davis
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Jie Li
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Joel Gil
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Cheyanne Head
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Jose Valdes
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - George D. Glinos
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Michael Solis
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Alexander Higa
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of Medicine P.O. Box 016250 (R 250) Miami Florida, 33136
| |
Collapse
|
43
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1583] [Impact Index Per Article: 263.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
45
|
Karim AS, Yan A, Ocotl E, Bennett DD, Wang Z, Kendziorski C, Gibson ALF. Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue. Wound Repair Regen 2018; 27:150-161. [PMID: 30585657 DOI: 10.1111/wrr.12692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
The regenerative capacity of burn wounds, and the need for surgical intervention, depends on wound depth. Clinical visual assessment is considered the gold standard for burn depth assessment but it remains a subjective and inaccurate method for tissue evaluation. The purpose of this study was to compare visual assessment with microscopic and molecular techniques for human burn depth determination, and illustrate differences in the evaluation of tissue for potential regenerative capacity. Using intraoperative visual assessment, patients were identified as having deep partial thickness or full thickness burn wounds. Tangential excisions of burn tissue were processed with hematoxylin and eosin to visualize tissue morphology, lactate dehydrogenase assay to ascertain cellular viability, and Keratin-15 and Ki67 to identify epidermal progenitor cells and proliferative capacity, respectively. RNA from deep partial and full thickness burn tissue as well as normal tissue controls were submitted for RNA sequencing. Lactate dehydrogenase, Keratin-15, and Ki67 were found throughout the excised burn wound tissue in both deep partial thickness burn tissues and in the second tangential excision of full thickness burn tissues. RNA sequencing demonstrated regenerative capacity in both deep partial and full thickness burn tissue, however a greater capacity for regeneration was present in deep partial thickness compared with full thickness burn tissues. In this study, we highlight the discordance that exists between the intraoperative clinical identification of burn injury depth, and microscopic and molecular determination of viability and regenerative capacity. Current methods utilizing visual assessment for depth of injury are imprecise, and can lead to removal of viable tissue. Additionally, hematoxylin and eosin microscopic analysis should not be used as the sole method in research or clinical determination of depth, as there are no differences in staining between viable and nonviable tissue.
Collapse
Affiliation(s)
- Aos S Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amy Yan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgar Ocotl
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel D Bennett
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ziyue Wang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
46
|
Darwin E, Tomic-Canic M. Healing Chronic Wounds: Current Challenges and Potential Solutions. CURRENT DERMATOLOGY REPORTS 2018; 7:296-302. [PMID: 31223516 PMCID: PMC6585977 DOI: 10.1007/s13671-018-0239-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to raise awareness, examine the challenges faced by wound care researchers and explore opportunities for potential improvements. RECENT FINDINGS Chronic wounds are associated with significant morbidity and mortality, and they represent a major medical and financial burden. Despite this, no new therapy has received FDA efficacy approval for the treatment of chronic wounds since 1997. Previous preclinical studies using animal models did not translate to human wounds due to inherent limitations of experimental models, variability in assessment methods and overall experimental design. Clinical trials continued to be challenged by the balance of the inclusion and exclusion criteria, the high cost and time expenditure of the trials, and the constraint of a single FDA-acceptable outcome of complete wound closure. SUMMARY Wound research faces multiple challenges in both pre-clinical and clinical research that slowed progress and development of efficacious therapies. Solutions to such challenges will provide new opportunities for improved study design in the future.
Collapse
Affiliation(s)
- Evan Darwin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2023, Miami, FL, 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2023, Miami, FL, 33136, USA
| |
Collapse
|
47
|
The renaissance of human skin organ culture: A critical reappraisal. Differentiation 2018; 104:22-35. [DOI: 10.1016/j.diff.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|