1
|
Xu M, Deng H, Zhang X, Deng J, Yu W, Han L, Yan Y, Yao D, Yu J, Ye S, Cui J, Hu D, Jia Y, Dong Z, Xu D, Yu X, Lu C. Systematic analysis of serum peptidase inhibitor 3 in psoriasis diagnosis and treatment. Clin Rheumatol 2024; 43:3361-3372. [PMID: 39287701 DOI: 10.1007/s10067-024-07138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. To date, there are no serum biomarkers for psoriasis that have been validated to diagnose or treat psoriasis. METHODS Peptidase inhibitor 3 (PI3) levels in serum were measured using chemiluminescence immunoassay (CLIA) in two independent cohorts including healthy controls (HC) and patients diagnosed with chronic urticaria (CU), chronic eczema (CE), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), or psoriasis vulgaris (PV). Receiver operating characteristic (ROC) curve analysis determined the diagnostic performance of PI3 in patients with psoriasis. The correlation between PI3 levels and the Psoriasis Area Severity Index (PASI) score was analyzed using the Spearman correlation method. Additionally, the study evaluated PI3 expression and treatment response of PV patients 12 weeks before and after topical treatment with calcipotriol betamethasone and calcipotriol ointment (T#1) or topical therapy plus PSORI-CM01 granules (T#2). RESULTS In cohort #1, PI3 levels effectively discriminate PV patients from HC and CU patients, with AUCs of 0.909 and 0.840, respectively. In cohort #2, AUCs for detecting PV patients among HC, CU, CE, SLE, and RA patients were 0.940, 0.926, 0.802, 0.989, and 0.951, respectively. For PsA patients, AUCs were 0.989, 0.986, 0.910, 1.000, and 0.984 compared to HC, CU, CE, SLE, and RA patients, respectively. In both cohorts, PI3 levels correlated significantly with PASI scores in PV patients (cohort #1, r = 0.433; cohort #2, r = 0.634) and PsA patients (cohort #2, r = 0.718). Moreover, univariate logistic regression analyses revealed that PV patients with higher PI3 expression had a significantly higher risk of treatment resistance, with an odds ratio of 3.45 [95% confidence interval (CI) 1.54, 7.74, p = 0.003]. Finally, PI3 levels decreased nearly 35-fold more in the responder than in the non-responder group before and after treatment. CONCLUSIONS Serological PI3 is a reliable biomarker for PV diagnosis and may have the potential to predict and monitor the progression of PV before and after treatment. Key Points • This study validated PI3's diagnostic performance in two independent psoriasis cohorts using CLIA. • PI3 expression is significantly correlated with the psoriasis severity and with patients who benefited from the treatments. • Serological PI3 is a reliable biomarker for psoriasis diagnosis and may have the potential to monitor the psoriasis progression with and without treatments.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jingwen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Wei Yu
- Department of Medical Laboratory, Affiliated to Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ling Han
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuhong Yan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Danni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingjie Yu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Shuyan Ye
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingwen Cui
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing, China
| | - Yan Jia
- ProteomicsEra Medical Co., Ltd, Beijing, China
| | | | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
2
|
Luengas-Martinez A, Paus R, Iqbal M, Bailey L, Ray DW, Young HS. Circadian rhythms in psoriasis and the potential of chronotherapy in psoriasis management. Exp Dermatol 2022; 31:1800-1809. [PMID: 35851722 DOI: 10.1111/exd.14649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Muenster, Germany
- CUTANEON, Hamburg, Germany
| | - Mudassar Iqbal
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura Bailey
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Mulder MLM, van Hal TW, Wenink MH, Koenen HJPM, van den Hoogen FHJ, de Jong EMGJ, van den Reek JMPA, Vriezekolk JE. Clinical, laboratory, and genetic markers for the development or presence of psoriatic arthritis in psoriasis patients: a systematic review. Arthritis Res Ther 2021; 23:168. [PMID: 34127053 PMCID: PMC8201808 DOI: 10.1186/s13075-021-02545-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Twenty to thirty percent of psoriasis (Pso) patients will develop psoriatic arthritis (PsA). Detection of Pso patients that are (at risk for) developing PsA is essential to prevent structural damage. We conducted a systematic search of five bibliographic databases, up to May 2020. We searched for studies assessing markers (clinical, laboratory, genetic) associated with the development or presence of PsA in Pso patients. Study selection and quality assessment of the included studies was performed, followed by a qualitative best evidence synthesis to determine the level of evidence for a marker and its association with concomitant/developing PsA in Pso. Overall, 259 possible markers were identified in 119 studies that met the inclusion criteria. Laboratory markers related to inflammation and bone metabolism reached a strong level of evidence for the association (not prediction) of PsA in Pso. Only CXCL10 showed strong evidence for a positive predictive value for PsA in Pso. The importance of timely detecting PsA in a Pso population, and finding more (bio)markers contributing to early detection, remains high.
Collapse
Affiliation(s)
- Michelle L M Mulder
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands. .,Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tamara W van Hal
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark H Wenink
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Elke M G J de Jong
- Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juul M P A van den Reek
- Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna E Vriezekolk
- Department of Rheumatology, Sint Maartenskliniek, PO box 9011, 6500 GM, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zhang LJ. Recent progress at the psoriasis and atopic dermatitis research front: An experimental dermatology perspective. Exp Dermatol 2021; 30:756-764. [PMID: 34057758 DOI: 10.1111/exd.14388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling-Juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Luengas-Martinez A, Hardman-Smart J, Paus R, Young HS. Vascular endothelial growth factor-A as a promising therapeutic target for the management of psoriasis. Exp Dermatol 2020; 29:687-698. [PMID: 32654325 DOI: 10.1111/exd.14151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factor-A (VEGF-A), the main angiogenic mediator, plays a critical role in the pathogenesis of several inflammatory immune-mediated diseases, including psoriasis. Even though anti-angiogenic therapies, such as VEGF inhibitors, are licensed for the treatment of various cancers and eye disease, VEGF-targeting interventions are not part of current psoriasis therapy. In this viewpoint essay, we argue that the existing preclinical research evidence on the role of VEGF-A in the pathogenesis of psoriasis as well as clinical observations in patients who have experienced psoriasis remission during oncological anti-VEGF-A therapy strongly suggests to systematically explore angiogenesis targeting also in the management of psoriasis. We also point out that some psoriasis therapies decrease circulating levels of VEGF-A and normalise the psoriasis-associated vascular pathology in the papillary dermis of plaques of psoriasis and that a subset of patients with constitutionally high levels of VEGF-A may benefit most from the anti-angiogenic therapy we advocate here. Given that novel, well-targeted personalised medicine therapies for the development of psoriasis need to be developed, we explore the hypothesis that VEGF-A and signalling through its receptors constitute a promising target for therapeutic intervention in the future management of psoriasis.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | | | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Monasterium Laboratory, Muenster, Germany
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Blood microRNA expressions in patients with mild to moderate psoriasis and the relationship between microRNAs and psoriasis activity. An Bras Dermatol 2020; 95:702-707. [PMID: 32811699 PMCID: PMC7672403 DOI: 10.1016/j.abd.2020.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background In recent studies, microRNAs (mi-RNAs) have been shown to play an important role in psoriasis pathogenesis. However, studies evaluating mi-RNAs in the blood of psoriasis patients including a large number of mi-RNA panels are scarce. Objective The authors aimed to assess mi-RNA expressions in blood samples of psoriasis patients, as well as to evaluate the association between mi-RNA expression and psoriasis severity. Methods This was a case-control study on 52 patients with psoriasis vulgaris and 54 controls. Patients’ medical history, psoriasis area and severity index (PASI) scores, and dermatology life quality index (DLQI) scores were recorded. The 42 disease-related mi-RNA primers were assessed by real-time PCR. Results In the patient group, 13.4% presented nail involvement and 8.2% had psoriatic arthritis. The mean PASI and DLQI scores were 7.90 ± 8.83 and 8.13 ± 5.50, respectively. Among 42 mi-RNA primers; hsa-miR-155-5p, hsa-miR-369-3p, hsa-miR-193b-3p, hsa-miR-498, hsa-miR-1266-5p, hsa-let-7d-5p, hsa-miR-205-5p, hsa-let-7c-5p, hsa-miR-30b-3p, and hsa-miR-515-3p expressions were significantly up-regulated, whereas hsa-miR-21-5p, hsa-miR-142-3p, hsa-miR-424-5p, hsa-miR-223-3p, hsa-miR-26a-5p, hsa-miR-106b-5p, hsa-miR-126-5p, hsa-miR-181a-5p, hsa-miR-222-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-17-3p, hsa-miR-30b-5p, hsa-miR-130a-3p, hsa-miR-30e-5p, and hsa-miR-16-5p were significantly down-regulated in psoriasis patients when compared with the control group (p < 0.05). Study limitations As the study included patients with mild to moderate psoriasis who mostly only received topical treatments, changes in miRNA before and after systemic treatments were not assessed. Conclusion The detection of 24 mi-RNA expressions up- or down-regulated in psoriasis patients, even in those with milder disease, further supports the role of mi-RNAs in the psoriasis pathogenesis. Future studies should clarify whether mi-RNAs can be used as a marker for psoriasis prognosis or as a therapeutic agent in the treatment of psoriasis.
Collapse
|
7
|
Zhukov AS, Khairutdinov VR, Samtsov AV. Precision therapy for psoriasis patients. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/0042-4609-2019-95-6-14-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- A. S. Zhukov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - V. R. Khairutdinov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - A. V. Samtsov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| |
Collapse
|
8
|
Xu M, Deng J, Xu K, Zhu T, Han L, Yan Y, Yao D, Deng H, Wang D, Sun Y, Chang C, Zhang X, Dai J, Yue L, Zhang Q, Cai X, Zhu Y, Duan H, Liu Y, Li D, Zhu Y, Radstake TRDJ, Balak DM, Xu D, Guo T, Lu C, Yu X. In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics 2019; 9:2475-2488. [PMID: 31131048 PMCID: PMC6526001 DOI: 10.7150/thno.31144] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Serum and plasma contain abundant biological information that reflect the body's physiological and pathological conditions and are therefore a valuable sample type for disease biomarkers. However, comprehensive profiling of the serological proteome is challenging due to the wide range of protein concentrations in serum. Methods: To address this challenge, we developed a novel in-depth serum proteomics platform capable of analyzing the serum proteome across ~10 orders or magnitude by combining data obtained from Data Independent Acquisition Mass Spectrometry (DIA-MS) and customizable antibody microarrays. Results: Using psoriasis as a proof-of-concept disease model, we screened 50 serum proteomes from healthy controls and psoriasis patients before and after treatment with traditional Chinese medicine (YinXieLing) on our in-depth serum proteomics platform. We identified 106 differentially-expressed proteins in psoriasis patients involved in psoriasis-relevant biological processes, such as blood coagulation, inflammation, apoptosis and angiogenesis signaling pathways. In addition, unbiased clustering and principle component analysis revealed 58 proteins discriminating healthy volunteers from psoriasis patients and 12 proteins distinguishing responders from non-responders to YinXieLing. To further demonstrate the clinical utility of our platform, we performed correlation analyses between serum proteomes and psoriasis activity and found a positive association between the psoriasis area and severity index (PASI) score with three serum proteins (PI3, CCL22, IL-12B). Conclusion: Taken together, these results demonstrate the clinical utility of our in-depth serum proteomics platform to identify specific diagnostic and predictive biomarkers of psoriasis and other immune-mediated diseases.
Collapse
|