1
|
Garrido-León MF, Soto-Ontiveros VJ, Aguilar-Galarza A, Méndez-García A, Anaya-Loyola MA, Garcia W, Haddad-Talancón L, Araujo-Mendoza JB, García-Gasca T, Rodríguez-García VM, Moreno-Celis U. Sex-dependent association of central circadian clock gene polymorphisms with clinical risk markers for noncommunicable diseases in the young population. Clin Nutr ESPEN 2025; 66:302-319. [PMID: 39894351 DOI: 10.1016/j.clnesp.2025.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The circadian clock, which governs periodic physiological changes, is influenced by various environmental factors, and its disruptions can lead to non-communicable chronic diseases (NCDs). Among the genes that control the circadian clock are ARNTL, CLOCK, CRY1, PER1, PER2, NR1D2, and MTNR1B, with several polymorphisms associated with diseases such as diabetes and hypertension. Therefore, this study aimed to determine the association between SNPs in the aforementioned genes and markers of non-communicable chronic diseases (NCDs) in a young population, stratified by gender. METHODS A sample of 346 individuals of both sexes aged 18 to 27 underwent clinical and nutritional evaluations to determine clinical markers associated with NCDs. Using isothermal PCR, 119 polymorphisms in the ARNTL, CLOCK, CRY1, PER1, PER2, NR1D2, and MTNR1B genes were determined. Subsequently, binary logistic regression analyses and mean comparisons using Student's t-test and one-way ANOVA with Bonferroni adjustment were performed. RESULTS Polymorphisms were associated with risk factors such as elevated waist circumference, BMI, insulin, and lipid imbalances, while some acted protectively. Notable SNPs included rs6486122, rs77486964, rs11022756, rs72869158 from ARNTL; rs7309618, rs10778528 from CRY1; rs2304911 from PER1; rs72620839, rs58574366 from PER2; rs6832769, rs1056547 from CLOCK; and rs4858095, rs11922577 from NR1D2, providing insights into the associations of genetic markers with clinically relevant markers for NCDs. CONCLUSION Clock gene polymorphisms exhibit associations with clinical markers of NCDs, emphasizing the intricate interaction between the biological clock and risk factors. This underscores the importance of genetic testing and personalized clinical approaches for prevention and treatment. Further research is needed to understand the underlying mechanisms and long-term health impacts of these genetic variations.
Collapse
Affiliation(s)
- María Fernanda Garrido-León
- Licenciatura en Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico
| | | | - Adriana Aguilar-Galarza
- Licenciatura en Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico; Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, San Pablo, Querétaro 76130, Mexico
| | - Miriam Aracely Anaya-Loyola
- Licenciatura en Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico; Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico
| | - William Garcia
- Laboratorio de Genética Humana, Código 46, S.A. de C.V., Cuernavaca 62498, Mexico
| | | | | | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico
| | | | - Ulisses Moreno-Celis
- Licenciatura en Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico; Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
2
|
Bui A, Orcales F, Kranyak A, Chung BY, Haran K, Smith P, Johnson C, Liao W. The Role of Genetics on Psoriasis Susceptibility, Comorbidities, and Treatment Response. Dermatol Clin 2024; 42:439-469. [PMID: 38796275 DOI: 10.1016/j.det.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This review highlights advances made in psoriasis genetics, including findings from genome-wide association studies, exome-sequencing studies, and copy number variant studies. The impact of genetic variants on various comorbidities and therapeutic responses is discussed.
Collapse
Affiliation(s)
- Audrey Bui
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA; Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Faye Orcales
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Allison Kranyak
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Bo-Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si Gyeonggi-do, 14068, Republic of Korea
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA.
| |
Collapse
|
3
|
Elghzaly AA, Sun C, Looger LL, Hirose M, Salama M, Khalil NM, Behiry ME, Hegazy MT, Hussein MA, Salem MN, Eltoraby E, Tawhid Z, Alwasefy M, Allam W, El-Shiekh I, Elserafy M, Abdelnaser A, Hashish S, Shebl N, Shahba AA, Elgirby A, Hassab A, Refay K, El-Touchy HM, Youssef A, Shabacy F, Hashim AA, Abdelzaher A, Alshebini E, Fayez D, El-Bakry SA, Elzohri MH, Abdelsalam EN, El-Khamisy SF, Ibrahim S, Ragab G, Nath SK. Genome-wide association study for systemic lupus erythematosus in an egyptian population. Front Genet 2022; 13:948505. [PMID: 36324510 PMCID: PMC9619055 DOI: 10.3389/fgene.2022.948505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 04/11/2024] Open
Abstract
Systemic lupus erythematosus (SLE) susceptibility has a strong genetic component. Genome-wide association studies (GWAS) across trans-ancestral populations show both common and distinct genetic variants of susceptibility across European and Asian ancestries, while many other ethnic populations remain underexplored. We conducted the first SLE GWAS on Egyptians-an admixed North African/Middle Eastern population-using 537 patients and 883 controls. To identify novel susceptibility loci and replicate previously known loci, we performed imputation-based association analysis with 6,382,276 SNPs while accounting for individual admixture. We validated the association analysis using adaptive permutation tests (n = 109). We identified a novel genome-wide significant locus near IRS1/miR-5702 (Pcorrected = 1.98 × 10-8) and eight novel suggestive loci (Pcorrected < 1.0 × 10-5). We also replicated (Pperm < 0.01) 97 previously known loci with at least one associated nearby SNP, with ITGAM, DEF6-PPARD and IRF5 the top three replicated loci. SNPs correlated (r 2 > 0.8) with lead SNPs from four suggestive loci (ARMC9, DIAPH3, IFLDT1, and ENTPD3) were associated with differential gene expression (3.5 × 10-95 < p < 1.0 × 10-2) across diverse tissues. These loci are involved in cellular proliferation and invasion-pathways prominent in lupus and nephritis. Our study highlights the utility of GWAS in an admixed Egyptian population for delineating new genetic associations and for understanding SLE pathogenesis.
Collapse
Affiliation(s)
- Ashraf A. Elghzaly
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Loren L. Looger
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, United States
| | - Misa Hirose
- Division of Genetics, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Noha M. Khalil
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat Essam Behiry
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Tharwat Hegazy
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Ahmed Hussein
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamad Nabil Salem
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ehab Eltoraby
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ziyad Tawhid
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mona Alwasefy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Walaa Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Sara Hashish
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | | | - Amira Elgirby
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Bab Sharqi, Egypt
| | - Amina Hassab
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Bab Sharqi, Egypt
| | - Khalida Refay
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ali Youssef
- Department of Rheumatology and Immunology, Faculty of Medicine, Benha University Hospital, Benha, Egypt
| | - Fatma Shabacy
- Department of Rheumatology and Immunology, Faculty of Medicine, Benha University Hospital, Benha, Egypt
| | | | - Asmaa Abdelzaher
- Department of Clinical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Emad Alshebini
- Department of Internal Medicine, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
| | - Dalia Fayez
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samah A. El-Bakry
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona H. Elzohri
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Asyut, Egypt
| | | | - Sherif F. El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- The Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Saleh Ibrahim
- Division of Genetics, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gaafar Ragab
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Xing J, Wang Y, Zhao X, Li J, Hou R, Niu X, Yin G, Li X, Zhang K. Variants in PRKCE and KLC1, Potential Regulators of Type I Psoriasis. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:1237-1245. [PMID: 35800456 PMCID: PMC9255717 DOI: 10.2147/ccid.s371719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022]
Abstract
Purpose Psoriasis is a multifactorial disease with a complex genetic predisposition. The pathophysiology of psoriasis is associated with genetic variants. To better characterize gene variants in psoriasis and identify the relationship between clinical characteristics and variant genes in its pathogenesis. Patients and Methods DNA was extracted and purified from eight pairs of monozygotic twins with psoriasis discordance and 282 type I psoriasis patients. Thirteen variable genes were amplified and sequenced using the Sanger method after whole genome sequencing. Results Thirteen genes were found to be variable in eight pairs of monozygotic twins with psoriasis discordance. Among the 13 genes, the variant frequencies of protein kinase C epsilon (PRKCE) (c.240T>C, 35.9% vs 47.7%, P < 0.05) and kinesin light chain 1 (KLC1) (c.216A>G, 2.9% vs 98.1%, P< 0.01) were significantly lower in psoriasis than in normal Asian individuals. Additionally, we found considerable differences in the relationship between variants in genes CADM2, JPH2, SPTLC3 and clinical characteristics stratified by medical history and family history. Moreover, the variants in MEGF6 (39.52% vs 22.50%, χ2=3.83, p < 0.05) showed a stronger association with the mild group (PASI ≤10) than the heavy group. Conclusion Our results provide a comprehensive correlation analysis of regulatory genes that are regulated in psoriasis. This integrated analysis offers novel insight into the pathogenic mechanisms involved in psoriasis.
Collapse
Affiliation(s)
- Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi Province, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, 030009, Shanxi Province, People’s Republic of China
- Correspondence: Kaiming Zhang, Taiyuan Central Hospital, No, 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province, People’s Republic of China, Tel +86-0351-5656080, Email
| |
Collapse
|
5
|
Hawerkamp HC, Fahy CMR, Fallon PG, Schwartz C. Break on through: The role of innate immunity and barrier defence in atopic dermatitis and psoriasis. SKIN HEALTH AND DISEASE 2022; 2:e99. [PMID: 35677926 PMCID: PMC9168024 DOI: 10.1002/ski2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
The human skin can be affected by a multitude of diseases including inflammatory conditions such as atopic dermatitis and psoriasis. Here, we describe how skin barrier integrity and immunity become dysregulated during these two most common inflammatory skin conditions. We summarise recent advances made in the field of the skin innate immune system and its interaction with adaptive immunity. We review gene variants associated with atopic dermatitis and psoriasis that affect innate immune mechanisms and skin barrier integrity. Finally, we discuss how current and future therapies may affect innate immune responses and skin barrier integrity in a generalized or more targeted approach in order to ameliorate disease in patients.
Collapse
Affiliation(s)
- H C Hawerkamp
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland
| | - C M R Fahy
- Paediatric Dermatology Children's Health Ireland at Crumlin Dublin Ireland.,Royal United Hospitals NHS Foundation Trust Bath UK
| | - P G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,National Children's Research Centre Our Lady's Children's Hospital Dublin Ireland.,Clinical Medicine Trinity College Dublin Dublin Ireland
| | - C Schwartz
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Erlangen Germany.,Medical Immunology Campus Erlangen FAU Erlangen-Nürnberg Erlangen Germany
| |
Collapse
|
6
|
Jamerson TA, Li Q, Sreeskandarajan S, Budunova IV, He Z, Kang J, Gudjonsson JE, Patrick MT, Tsoi LC. Roles Played by Stress-Induced Pathways in Driving Ethnic Heterogeneity for Inflammatory Skin Diseases. Front Immunol 2022; 13:845655. [PMID: 35572606 PMCID: PMC9095822 DOI: 10.3389/fimmu.2022.845655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases associated with significant disease burden. Atopic dermatitis and psoriasis are among the most common IMSCs in the United States and have disproportionate impact on racial and ethnic minorities. African American patients are more likely to develop atopic dermatitis compared to their European American counterparts; and despite lower prevalence of psoriasis among this group, African American patients can suffer from more extensive disease involvement, significant post-inflammatory changes, and a decreased quality of life. While recent studies have been focused on understanding the heterogeneity underlying disease mechanisms and genetic factors at play, little emphasis has been put on the effect of psychosocial or psychological stress on immune pathways, and how these factors contribute to differences in clinical severity, prevalence, and treatment response across ethnic groups. In this review, we explore the heterogeneity of atopic dermatitis and psoriasis between African American and European American patients by summarizing epidemiological studies, addressing potential molecular and environmental factors, with a focus on the intersection between stress and inflammatory pathways.
Collapse
Affiliation(s)
- Taylor A. Jamerson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Qinmengge Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Irina V. Budunova
- Department of Dermatology, Northwestern Medicine, Northwestern University, Chicago, IL, United States,Department of Urology, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Zhi He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jian Kang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Lam C. Tsoi,
| |
Collapse
|
7
|
Tawfik NZ, Abdallah HY, Hassan R, Hosny A, Ghanem DE, Adel A, Atwa MA. PSORS1 Locus Genotyping Profile in Psoriasis: A Pilot Case-Control Study. Diagnostics (Basel) 2022; 12:diagnostics12051035. [PMID: 35626191 PMCID: PMC9139320 DOI: 10.3390/diagnostics12051035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: The psoriasis susceptibility 1 (PSORS1) locus, located within the major histocompatibility complex, is one of the main genetic determinants for psoriasis, the genotyping profile for three single-nucleotide polymorphisms (SNPs) comprising the PSORS1 locus: rs1062470 within PSORS1C1/CDSN genes, rs887466 within PSORS1C3 gene, rs10484554 within LOC105375015 gene, were investigated and correlated with psoriasis risk and severity. (2) Methods: This pilot case-controlled study involved 100 psoriatic patients and 100 healthy individuals. We investigated three SNPs and assessed the relative gene expression profile for the PSORS1C1 gene. We then correlated the results with both disease risk and severity. (3) Results: The most significantly associated SNP in PSORS1 locus with psoriasis was rs10484554 with its C/T genotype 5.63 times more likely to develop psoriasis under codominant comparison. Furthermore, C/T and T/T genotypes were 5 times more likely to develop psoriasis. The T allele was 3 times more likely to develop psoriasis under allelic comparison. The relative gene expression of PSORS1C1 for psoriatic patients showed to be under-expressed compared to normal controls. (4) Conclusions: Our study revealed the association of the three studied SNPs with psoriasis risk and severity in an Egyptian cohort, indicating that rs10484554 could be the major key player in the PSORS1 locus.
Collapse
Affiliation(s)
- Noha Z. Tawfik
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: ; Tel.: +20-127-4504926
| | - Hoda Y. Abdallah
- Medical Genetics Unit, Histology & Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ranya Hassan
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Alaa Hosny
- Ministry of Health, Cairo 11435, Egypt; (A.H.); (D.E.G.); (A.A.)
| | - Dina E. Ghanem
- Ministry of Health, Cairo 11435, Egypt; (A.H.); (D.E.G.); (A.A.)
| | - Aya Adel
- Ministry of Health, Cairo 11435, Egypt; (A.H.); (D.E.G.); (A.A.)
| | - Mona A. Atwa
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
8
|
Zhang LJ. Recent progress at the psoriasis and atopic dermatitis research front: An experimental dermatology perspective. Exp Dermatol 2021; 30:756-764. [PMID: 34057758 DOI: 10.1111/exd.14388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling-Juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Srivastava AK, Chand Yadav T, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118:102614. [PMID: 33578119 DOI: 10.1016/j.jaut.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease with complex pathogenesis and multiple etiological factors. Besides the essential role of autoreactive T cells and constellation of cytokines, the discovery of IL-23/Th17 axis as a central signaling pathway has unraveled the mechanism of accelerated inflammation in psoriasis. This has provided insights into psoriasis pathogenesis and revolutionized the development of effective biological therapies. Moreover, genome-wide association studies have identified several candidate genes and susceptibility loci associated with this disease. Although involvement of cellular innate and adaptive immune responses and dysregulation of immune cells have been implicated in psoriasis initiation and maintenance, there is still a lack of unifying mechanism for understanding the pathogenesis of this disease. Emerging evidence suggests that psoriasis is a high-mortality disease with additional burden of comorbidities, which adversely affects the treatment response and overall quality of life of patients. Furthermore, changing trends of psoriasis-associated comorbidities and shared patterns of genetic susceptibility, risk factors and pathophysiological mechanisms manifest psoriasis as a multifactorial systemic disease. This review highlights the recent progress in understanding the crucial role of different immune cells, proinflammatory cytokines and microRNAs in psoriasis pathogenesis. In addition, we comprehensively discuss the involvement of various complex signaling pathways and their interplay with immune cell markers to comprehend the underlying pathophysiological mechanism, which may lead to exploration of new therapeutic targets and development of novel treatment strategies to reduce the disastrous nature of psoriasis and associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Centre at InStem, Bangalore, 560065, Karnataka, India; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune, 411057, Maharashtra, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Clock Regulation of Skin Regeneration in Stem Cell Aging. J Invest Dermatol 2020; 141:1024-1030. [PMID: 33256977 DOI: 10.1016/j.jid.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
Abstract
The circadian clockwork evolved as an adaptation to daily environmental changes and allows temporal alignment of functions between cells and organs on a systemic level in complex multicellular organisms. These clock functions are particularly important in the skin, which is directly exposed to the external environment. Recent studies have revealed the important impact of circadian rhythmicity on stem cell (SC) homeostasis and regeneration in both young and old skin. This review discusses how the circadian clock regulates tissue function in skin-resident SCs and their niche and how altered daily rhythms in aged SCs negatively affect skin regeneration.
Collapse
|
11
|
Wohlers I, Künstner A, Munz M, Olbrich M, Fähnrich A, Calonga-Solís V, Ma C, Hirose M, El-Mosallamy S, Salama M, Busch H, Ibrahim S. An integrated personal and population-based Egyptian genome reference. Nat Commun 2020; 11:4719. [PMID: 32948767 PMCID: PMC7501257 DOI: 10.1038/s41467-020-17964-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/24/2020] [Indexed: 02/05/2023] Open
Abstract
A small number of de novo assembled human genomes have been reported to date, and few have been complemented with population-based genetic variation, which is particularly important for North Africa, a region underrepresented in current genome-wide references. Here, we combine long- and short-read whole-genome sequencing data with recent assembly approaches into a de novo assembly of an Egyptian genome. The assembly demonstrates well-balanced quality metrics and is complemented with variant phasing via linked reads into haploblocks, which we associate with gene expression changes in blood. To construct an Egyptian genome reference, we identify genome-wide genetic variation within a cohort of 110 Egyptian individuals. We show that differences in allele frequencies and linkage disequilibrium between Egyptians and Europeans may compromise the transferability of European ancestry-based genetic disease risk and polygenic scores, substantiating the need for multi-ethnic genome references. Thus, the Egyptian genome reference will be a valuable resource for precision medicine.
Collapse
Affiliation(s)
- Inken Wohlers
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Matthias Munz
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Michael Olbrich
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Verónica Calonga-Solís
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Brazil
| | - Caixia Ma
- Novogene (UK) Company Limited, 25 Cambridge Science Park, Milton Road, CB4 0FW, Cambridge, UK
| | - Misa Hirose
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Shaaban El-Mosallamy
- Medical Experimental Research Center (MERC), Mansoura University, Elgomhouria St., Dakahlia Governorate, 35516, Mansoura, Egypt
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Mansoura University, Elgomhouria St., Dakahlia Governorate, 35516, Mansoura, Egypt
- Institute of Global Health and Human Ecology, The American University in Cairo, AUC avenue, 11835, Cairo, Egypt
| | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Saleh Ibrahim
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
12
|
Xing J, Zhao X, Li X, Wang Y, Li J, Hou R, Niu X, Yin G, Li X, Zhang K. Variation at ACOT12 and CT62 locus represents susceptibility to psoriasis in Han population. Mol Genet Genomic Med 2019; 8:e1098. [PMID: 31858748 PMCID: PMC7005626 DOI: 10.1002/mgg3.1098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory disorder of the skin, and genetic factors are reported to be involved in the disease pathogenesis. Many studies have named psoriasis candidate genes. Objective In this study, we determined the mutation frequency of 7 variable genes in 1,027 psoriatic patients and investigated its possible mechanism associated with psoriasis. Method A total of 7 variable genes from 1,027 psoriatic patients were amplified and sequenced using the Sanger method. The mutation frequency was compared to that of non‐psoriatic individuals in Asia using information from databases. Results Among the 7 investigated genes, the mutation frequency of ACOT12 (c.80A>G, 9.98% vs. 5.85%, p < .05) and CT62 (c.476C>T,15.8% vs. 9.93%, p < .05) was found to be significantly higher than among non‐psoriatic Asian individuals. The mutation frequencies of CASZ1(c.599T>G), SPRED1(c.155A>G), and ACOT12 (c.80A>G) differed significantly between the groups organized by medical history, PASI, and family history. SPRED1 gene variants (17.25% vs. 7.78%, p < .01) showed a stronger association with the family history group at the onset of psoriasis than with the no family history group. Conclusions Our results provide a comprehensive correlation analysis of susceptibility genes in psoriasis patients. Clinical characteristics of patients play important roles in the development of psoriatic skin.
Collapse
Affiliation(s)
- Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|