1
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
de Boer FL, van der Molen HF, Wang JH, Raun E, Pereda J, Hwu EET, Jakasa I, Dubrac S, Rustemeyer T, Kezic S. Skin Barrier- and Immune Response-Related Biomarkers of Solar UVR Exposure Comparing Indoor and Outdoor Workers. JID INNOVATIONS 2024; 4:100280. [PMID: 38756236 PMCID: PMC11097112 DOI: 10.1016/j.xjidi.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 05/18/2024] Open
Abstract
Outdoor workers have increased risk of developing keratinocyte cancer due to accumulated skin damage resulting from chronic and excessive exposure to UVR. This study aims to identify potential noninvasive biomarkers to assess chronic UVR exposure. We analyzed stratum corneum biomarkers collected from 2 skin locations and 2 occupational groups with contrasting solar UVR exposure: the forehead and retroauricular skin among outdoor workers and indoor workers. Using a linear mixed model adjusting for age and skin phototype, we compared biomarkers between both skin sites in indoor and outdoor workers. We measured markers of the immune response and skin barrier, including cytokines, GFs, 15-hydroxyeicosatetraenoic acid, cis- and trans-urocanic acid, and corneocyte topography, indicated by circular nano objects. Differences between the 2 skin sites were found for cis-urocanic acid, total urocanic acid, IL-1α, IL-1RA, IL-1RA/IL-1α, IL-18, 15-hydroxyeicosatetraenoic acid, CCL4, and circular nano objects. The levels of cis-urocanic acid and CCL4 also differed between indoor and outdoor workers. These findings underscore changes in both immune response and skin barrier induced by UVR. They indicate the potential utility of stratum corneum biomarkers in detecting both chronic UVR exposure in occupational setting and aiding in the development of preventive measures.
Collapse
Affiliation(s)
- Florentine L. de Boer
- Amsterdam Public Health Research Institute, Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk F. van der Molen
- Amsterdam Public Health Research Institute, Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jen-Hung Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ellen Raun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jorge Pereda
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edwin En-Te Hwu
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Rustemeyer
- Dermato-Allergology and Occupational Dermatology, Amsterdam University Medical Centers, Noord-Holland, The Netherlands
| | - Sanja Kezic
- Amsterdam Public Health Research Institute, Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Keurentjes AJ, Jakasa I, Kezic S. Research Techniques Made Simple: Stratum Corneum Tape Stripping. J Invest Dermatol 2021; 141:1129-1133.e1. [PMID: 33888213 DOI: 10.1016/j.jid.2021.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Stratum corneum (SC)-derived biomarkers can provide relevant information on the skin's antimicrobial, physical, and immunological barriers. The SC is easily accessible, and collection by adhesive tapes (tape stripping [TS]) is robust and minimally invasive. Given its minimal invasiveness and simplicity, TS is particularly useful for studies in the pediatric population and when repetitive sampling over time is desirable, for example, in clinical trials. The palette of SC biomarkers is expanding in a wide variety of research areas, benefiting from advances in multiplex immunoassays and omics approaches, including proteomics, lipidomics, and transcriptomics. Although there is increasing interest in collecting SC samples, the lack of TS standardization hampers its broader implementation in research and clinical practice. In this article, we address the TS procedure as well as methodological challenges that should be considered in the development of an optimal sampling strategy.
Collapse
Affiliation(s)
- Anne J Keurentjes
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Keurentjes AJ, de Witt KD, Jakasa I, Rüther L, Kemperman PMJH, Kezic S, Riethmüller C. Actinic keratosis and surrounding skin exhibit changes in corneocyte surface topography and decreased levels of filaggrin degradation products. Exp Dermatol 2020; 29:462-466. [PMID: 32112584 PMCID: PMC7317372 DOI: 10.1111/exd.14089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 11/27/2022]
Abstract
Actinic keratosis (AK) is a frequent premalignant skin lesion mainly caused by chronic sun exposure. AK lesions are often surrounded by invisible, subclinical alterations, called field of cancerization (FoC). Definition of FoC is of importance for therapy management; however, the criteria and non-invasive tools to characterize FoC are lacking. Atomic force microscopy (AFM) proved to be a suitable tool for detection of changes in the corneocyte surface topography in inflammatory skin diseases, which share similar clinical features with AK such as hyper- and parakeratosis. Therefore, in this study we applied AFM to investigate AK and surrounding skin obtained by non-invasive collection of the stratum corneum (SC) with adhesive tapes. Furthermore, we determined degradation products of structural protein filaggrin (natural moisturizing factor, NMF), which previously showed association with the changes in corneocyte surface topography. Ten patients with multiple AK on the face were recruited from the outpatient clinic. SC samples were collected from the AK lesion, skin sites adjacent to the AK, 5 cm from the AK and retroauricular area. Corneocyte surface topography was determined by AFM, and NMF by liquid chromatography. The AK lesion showed alterations of the corneocyte surface topography characterized by an increased number of nanosize protrusions, which gradually decreased with the distance from the lesion. NMF levels show an inverse pattern. Atomic force microscopy showed to be a suitable tool to detect changes in the corneocyte surface topography on the AK lesion and surrounding skin in a non-invasive manner.
Collapse
Affiliation(s)
- Anne J. Keurentjes
- Coronel Institute of Occupational HealthAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Kornelis D. de Witt
- Coronel Institute of Occupational HealthAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Ivone Jakasa
- Laboratory for Analytical ChemistryDepartment of Chemistry and BiochemistryFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | | | - Patrick M. J. H. Kemperman
- Department of DermatologyAmsterdam UMC, location AMCAmsterdamThe Netherlands
- Department of Dermatology, Dijklander ZiekenhuisPurmerendThe Netherlands
| | - Sanja Kezic
- Coronel Institute of Occupational HealthAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | | |
Collapse
|