1
|
Wang Z, Wu L, Wang W. Innovative delivery systems for epicutaneous immunotherapy. Front Immunol 2023; 14:1238022. [PMID: 37675117 PMCID: PMC10479942 DOI: 10.3389/fimmu.2023.1238022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Allergen-specific immunotherapy (AIT) describes the establishment of peripheral tolerance through repeated allergen exposure, which qualifies as the only curative treatment for allergic diseases. Although conventional subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) have been approved to treat respiratory allergies clinically, the progress made is far from satisfactory. Epicutaneous immunotherapy (EPIT) exploits the skin's immune properties to modulate immunological response, which is emerging as a promising alternative and has shown effectiveness in many preclinical and clinical studies for both respiratory and food allergies. It is worth noting that the stratum corneum (SC) barrier impedes the effective delivery of allergens, while disrupting the SC layer excessively often triggers unexpected Th2 immune responses. This work aims to comprehend the immunological mechanisms of EPIT, and summarize the innovative system for sufficient delivery of allergens as well as tolerogenic adjuvants. Finally, the safety, acceptability, and cost-effectiveness of these innovative delivery systems are discussed, which directs the development of future immunotherapies with all desirable characteristics.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingzhi Wu
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
3
|
Bellmann L, Strandt H, Zelle‐Rieser C, Ortner D, Tripp CH, Schmid S, Rühl J, Cappellano G, Schaffenrath S, Prokopi A, Spoeck S, Seretis A, Del Frari B, Sigl S, Krapf J, Heufler C, Keler T, Münz C, Romani N, Stoitzner P. Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur J Immunol 2022; 52:1829-1841. [PMID: 34932821 PMCID: PMC9788233 DOI: 10.1002/eji.202149670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Human skin is a preferred vaccination site as it harbors multiple dendritic cell (DC) subsets, which display distinct C-type lectin receptors (CLR) that recognize pathogens. Antigens can be delivered to CLR by antibodies or ligands to boost antigen-specific immune responses. This concept has been established in mouse models but detailed insights into the functional consequences of antigen delivery to human skin DC in situ are sparse. In this study, we cloned and produced an anti-human Langerin antibody conjugated to the EBV nuclear antigen 1 (EBNA1). We confirmed specific binding of anti-Langerin-EBNA1 to Langerhans cells (LC). This novel LC-based vaccine was then compared to an existing anti-DEC-205-EBNA1 fusion protein by loading LC in epidermal cell suspensions before coculturing them with autologous T cells. After restimulation with EBNA1-peptides, we detected elevated levels of IFN-γ- and TNF-α-positive CD4+ T cells with both vaccines. When we injected the fusion proteins intradermally into human skin explants, emigrated skin DC targeted via DEC-205-induced cytokine production by T cells, whereas the Langerin-based vaccine failed to do so. In summary, we demonstrate that antibody-targeting approaches via the skin are promising vaccination strategies, however, further optimizations of vaccines are required to induce potent immune responses.
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Ortner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sandra Schmid
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Julia Rühl
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Giuseppe Cappellano
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Department of Health SciencesInterdisciplinary Research Center of Autoimmune DiseasesCenter for Translational Research on Autoimmune and Allergic Disease‐CAADUniversità del Piemonte OrientaleNovaraItaly
| | - Sandra Schaffenrath
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Anastasia Prokopi
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sarah Spoeck
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Athanasios Seretis
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Research Institute for Biomedical Aging ResearchUniversity of InnsbruckAustria
| | - Barbara Del Frari
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Stephan Sigl
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Johanna Krapf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christine Heufler
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | | | - Christian Münz
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Cichoń MA, Pfisterer K, Leitner J, Wagner L, Staud C, Steinberger P, Elbe-Bürger A. Interoperability of RTN1A in dendrite dynamics and immune functions in human Langerhans cells. eLife 2022; 11:e80578. [PMID: 36223176 PMCID: PMC9555864 DOI: 10.7554/elife.80578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is an active immune organ where professional antigen-presenting cells such as epidermal Langerhans cells (LCs) link innate and adaptive immune responses. While Reticulon 1A (RTN1A) was recently identified in LCs and dendritic cells in cutaneous and lymphoid tissues of humans and mice, its function is still unclear. Here, we studied the involvement of this protein in cytoskeletal remodeling and immune responses toward pathogens by stimulation of Toll-like receptors (TLRs) in resident LCs (rLCs) and emigrated LCs (eLCs) in human epidermis ex vivo and in a transgenic THP-1 RTN1A+ cell line. Hampering RTN1A functionality through an inhibitory antibody induced significant dendrite retraction of rLCs and inhibited their emigration. Similarly, expression of RTN1A in THP-1 cells significantly altered their morphology, enhanced aggregation potential, and inhibited the Ca2+ flux. Differentiated THP-1 RTN1A+ macrophages exhibited long cell protrusions and a larger cell body size in comparison to wild-type cells. Further, stimulation of epidermal sheets with bacterial lipoproteins (TLR1/2 and TLR2 agonists) and single-stranded RNA (TLR7 agonist) resulted in the formation of substantial clusters of rLCs and a significant decrease of RTN1A expression in eLCs. Together, our data indicate involvement of RTN1A in dendrite dynamics and structural plasticity of primary LCs. Moreover, we discovered a relation between activation of TLRs, clustering of LCs, and downregulation of RTN1A within the epidermis, thus indicating an important role of RTN1A in LC residency and maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Karin Pfisterer
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Lena Wagner
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of ViennaViennaAustria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | | |
Collapse
|
5
|
Laser facilitated epicutaneous peptide immunization using dry patch technology. Vaccine 2021; 39:5259-5264. [PMID: 34364720 DOI: 10.1016/j.vaccine.2021.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The skin has been intensely investigated as a target tissue for immunization because it is populated by multiple types of antigen presenting cells. Directly addressing dendritic cells or Langerhans cells in vivo represents an attractive strategy for inducing T cell responses in cancer immunotherapy. We and others have studied fractional laser ablation as a novel method combining efficient delivery of macromolecules to the skin with an inherent adjuvant effect of laser illumination. In this proof of concept study, we demonstrate the feasibility of peptide delivery to the skin using the P.L.E.A.S.E. professional Erb:YAG fractional infrared laser together with EPIMMUN patches. In an ovalbumin mouse model we demonstrate that a dry patch formulation of SIINFEKL peptide in combination with CpG-ODN1826, but not imiquimod or polyI:C, induces potent cytotoxic T cell responses, which can be further boosted by co-delivery of the pan-helper T cell epitope PADRE.
Collapse
|