1
|
Wu C, Luo D, Shi B, Chen S, Sun C, He Z, Yu C. Sciellin inhibits senescence and promotes pancreatic cancer progress by activating the notch signaling pathway. Sci Rep 2025; 15:16133. [PMID: 40341648 PMCID: PMC12062315 DOI: 10.1038/s41598-025-88265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/28/2025] [Indexed: 05/10/2025] Open
Abstract
Pancreatic cancer (PC) incidence is increasing annually globally, and the five-year survival rate of patients with PC is approximately 10%. Cellular senescence is a regulatory mechanism against cancer that prevents tumor development by inhibiting the proliferation of damaged or abnormal cells. However, the mechanisms underlying cellular senescence in PC is unclear. Sciellin (SCEL) is a precursor protein of the cornified envelope predominantly enriched in epithelial cells. Previous studies have discovered potential links between SCEL and cellular senescence through bioinformatics analysis. Therefore, the specific role of SCEL in cellular senescence and the malignant features of PC are unclear. In vivo and in vitro assays were performed to investigate the role of SCEL in PC cell senescence, proliferation, invasion, and metastasis. Gene set enrichment analysis was used to identify the Notch signaling pathways activated by SCEL, and coimmunoprecipitation was used to detect proteins that interact with SCEL. The results revealed that SCEL was significantly upregulated in PC tissues and cell models and was correlated with poor clinical outcomes. Further investigation revealed that the interaction between SCEL and Jagged-1 promotes the activation of the Notch signaling pathway, effectively inhibiting the senescence of PC cells while enhancing their proliferation, invasion, and metastatic capabilities. Therefore, SCEL is a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China
| | - Dan Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China
- Department of Hepatobiliary Surgery, People's Hospital of the Guizhou Province, Guiyang, 550003, China
| | - Binbin Shi
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China
| | - Shiyu Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, Medical School, South China Hospital, Shenzhen University, Shenzhen, 518116, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, 550001, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China.
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China.
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China.
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550001, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, 550001, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, 550001, China.
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
2
|
Ni Y, Liu L, Jiang F, Wu M, Qin Y. JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis. Int J Mol Sci 2025; 26:307. [PMID: 39796164 PMCID: PMC11719987 DOI: 10.3390/ijms26010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression. RNA sequencing of anterior lens capsule samples from ARC patients revealed a significant downregulation of Notch signaling, coupled with an upregulation of ferroptosis-related genes. Notch1 expression decreased, while ferroptosis markers increased in an age-dependent manner. In vitro, upregulation of Notch signaling alleviated ferroptosis by decreasing ferritin heavy chain 1 (FTH1) and p53 levels while enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11). Conversely, inhibition of Notch signaling exacerbated ferroptosis, as evidenced by reduced Nrf2, GPX4, and SLC7A11 expression. These findings suggest that downregulation of Notch signaling promotes ferroptosis in LECs by impairing the Nrf2/GPX4 antioxidant pathway, thereby contributing to ARC development. This study offers new insights into ARC pathogenesis and highlights the Notch signaling pathway as a potential therapeutic target for preventing or mitigating ARC progression.
Collapse
Affiliation(s)
- Yan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| |
Collapse
|
3
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
4
|
Docshin P, Panshin D, Malashicheva A. Molecular Interplay in Cardiac Fibrosis: Exploring the Functions of RUNX2, BMP2, and Notch. Rev Cardiovasc Med 2024; 25:368. [PMID: 39484128 PMCID: PMC11522771 DOI: 10.31083/j.rcm2510368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac fibrosis, characterized by the excessive deposition of extracellular matrix proteins, significantly contributes to the morbidity and mortality associated with cardiovascular diseases. This article explores the complex interplay between Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and Notch signaling pathways in the pathogenesis of cardiac fibrosis. Each of these pathways plays a crucial role in the regulation of cellular functions and interactions that underpin fibrotic processes in the heart. Through a detailed review of current research, we highlight how the crosstalk among RUNX2, BMP2, and Notch not only facilitates our understanding of the fibrotic mechanisms but also points to potential biomolecular targets for intervention. This article delves into the regulatory networks, identifies key molecular mediators, and discusses the implications of these signaling pathways in cardiac structural remodeling. By synthesizing findings from recent studies, we provide insights into the cellular and molecular mechanisms that could guide future research directions, aiming to uncover new therapeutic strategies to manage and treat cardiac fibrosis effectively.
Collapse
Affiliation(s)
- Pavel Docshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Daniil Panshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| |
Collapse
|
5
|
Zhu Y, Anastasiadis ZP, Espindola Netto JM, Evans T, Tchkonia T, Kirkland JL. Past and Future Directions for Research on Cellular Senescence. Cold Spring Harb Perspect Med 2024; 14:a041205. [PMID: 37734865 PMCID: PMC10835613 DOI: 10.1101/cshperspect.a041205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Cellular senescence was initially described in the early 1960s by Hayflick and Moorehead. They noted sustained cell-cycle arrest after repeated subculturing of human primary cells. Over half a century later, cellular senescence has become recognized as one of the fundamental pillars of aging. Developing senotherapeutics, interventions that selectively eliminate or target senescent cells, has emerged as a key focus in health research. In this article, we note major milestones in cellular senescence research, discuss current challenges, and point to future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zacharias P Anastasiadis
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Tamara Evans
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
6
|
Jo HR, Hwang J, Jeong JH. MicroRNA miR-214-5p induces senescence of microvascular endothelial cells by targeting the JAG1/Notch signaling pathway. Noncoding RNA Res 2023; 8:385-391. [PMID: 37260583 PMCID: PMC10227379 DOI: 10.1016/j.ncrna.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
During cellular senescence, irreversible cell cycle arrest is accompanied by morphological and genetic alterations. MicroRNAs (miRNAs) play a critical role in regulating senescence by modulating the abundance of crucial senescence regulatory proteins. Therefore, to identify novel senescence-associated miRNAs, we analyzed differentially expressed miRNAs in microvascular endothelial cells (MVEC). Among the 80 differentially expressed miRNAs in replicative senescent MVECs, 16 miRNAs of unknown gene ontology were used in the senescence-associated β-galactosidase assay. Thus, we identified miR-214-5p as having high senescence-inducing activity, inhibiting the proliferation and angiogenesis activity of MVECs. To reveal the senescence-regulating mechanism of miR-214-5p, we searched for target genes through sequence- and literature-based analysis. Molecular manipulation of miR-214-5p demonstrated that miR-214-5p regulated the expression and function of Jagged 1 (JAG1) in senescent MVECs. Silencing JAG1 or downstream genes of JAG1-Notch signaling, accelerated the senescence of MVECs. Additionally, ectopic overexpression of JAG1 reversed the senescence-inducing activity of miR-214-5p. In conclusion, we identified miR-214-5p as a senescence-associated miRNA. Targeting miR-214-5p may be a potential strategy to delay vascular aging and overcome the detrimental effects of senescence and age-related diseases.
Collapse
Affiliation(s)
- Hye-ram Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Jiwon Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
7
|
Ogata Y, Yamada T, Hasegawa S, Sugiura K, Akamatsu H. Changes of senescent cell accumulation and removal in skin tissue with ageing. Exp Dermatol 2023. [PMID: 37087745 DOI: 10.1111/exd.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Yuichiro Ogata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Deng EZ, Fleishman RH, Xie Z, Marino GB, Clarke DJB, Ma'ayan A. Computational screen to identify potential targets for immunotherapeutic identification and removal of senescence cells. Aging Cell 2023:e13809. [PMID: 37082798 DOI: 10.1111/acel.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 04/22/2023] Open
Abstract
To prioritize gene and protein candidates that may enable the selective identification and removal of senescent cells, we compared gene expression signatures from replicative senescent cells to transcriptomics and proteomics atlases of normal human tissues and cell types. RNA-seq samples from in vitro senescent cells (6 studies, 13 conditions) were analyzed for identifying targets at the gene and transcript levels that are highly expressed in senescent cells compared to their expression in normal human tissues and cell types. A gene set made of 301 genes called SenoRanger was established based on consensus analysis across studies and backgrounds. Of the identified senescence-associated targets, 29% of the genes in SenoRanger are also highly differentially expressed in aged tissues from GTEx. The SenoRanger gene set includes previously known as well as novel senescence-associated genes. Pathway analysis that connected the SenoRanger genes to their functional annotations confirms their potential role in several aging and senescence-related processes. Overall, SenoRanger provides solid hypotheses about potentially useful targets for identifying and removing senescence cells.
Collapse
Affiliation(s)
- Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reid H Fleishman
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Kawagishi-Hotta M, Hasegawa S, Hasebe Y, Inoue Y, Okuno R, Arima M, Iwata Y, Sugiura K, Akamatsu H. Increase in Inhibin beta A/Activin-A expression in the human epidermis and the suppression of epidermal stem/progenitor cell proliferation with aging. J Dermatol Sci 2022; 106:150-158. [DOI: 10.1016/j.jdermsci.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
|
10
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
11
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|