1
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Ricci C. Advances in Diagnosis of Skin and Superficial Tissue Disorders-"Old and Emerging" Diagnostic Tools. Diagnostics (Basel) 2024; 14:2414. [PMID: 39518381 PMCID: PMC11544959 DOI: 10.3390/diagnostics14212414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Skin and superficial tissue disorders (SSTDs) are some of the most common diseases affecting humans [...].
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, DIAP-Dipartimento InterAziendale di Anatomia Patologica di Bologna, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy
| |
Collapse
|
3
|
Naimy S, Sølberg JBK, Kuczek DE, Løvendorf MB, Bzorek M, Litman T, Mund A, Rahbek Gjerdrum LM, Clark RA, Mann M, Dyring-Andersen B. Comparative Quantitative Proteomic Analysis of Melanoma Subtypes, Nevus-Associated Melanoma, and Corresponding Nevi. J Invest Dermatol 2024; 144:1608-1621.e4. [PMID: 38185415 DOI: 10.1016/j.jid.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
A substantial part of cutaneous malignant melanomas develops from benign nevi. However, the precise molecular events driving the transformation from benign to malignant melanoma are not well-understood. We used laser microdissection and mass spectrometry to analyze the proteomes of melanoma subtypes, including superficial spreading melanomas (n = 17), nodular melanomas (n = 17), and acral melanomas (n = 15). Furthermore, we compared the proteomes of nevi cells with those of melanoma cells within the same specimens (nevus-associated melanoma (n = 14)). In total, we quantified 7935 proteins. Despite the genomic and clinical differences of the melanoma subtypes, our analysis revealed relatively similar proteomes, except for the upregulation of proteins involved in immune activation in nodular melanomas versus acral melanomas. Examining nevus-associated melanoma versus nevi, we found 1725 differentially expressed proteins (false discovery rate < 0.05). Among these proteins were 140 that overlapped with cancer hallmarks, tumor suppressors, and regulators of metabolism and cell cycle. Pathway analysis indicated aberrant activation of the phosphoinositide 3-kinase-protein kinase B-mTOR pathways and the Hippo-YAP pathway. Using a classifier, we identified six proteins capable of distinguishing melanoma from nevi samples. Our study represents a comprehensive comparative analysis of the proteome in melanoma subtypes and associated nevi, offering insights into the biological behavior of these distinct entities.
Collapse
Affiliation(s)
- Soraya Naimy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie B K Sølberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Dorota E Kuczek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|