1
|
Whiteside T, Sehra S, Chadderton T, Guha M, Stubbs M, Timmers C, Jackson E. Assessment of CD73 activity in breast cancer-derived small extracellular vesicles: application to monitoring of patients' responses to immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2025; 26:101052. [PMID: 40390761 PMCID: PMC12088776 DOI: 10.1016/j.iotech.2025.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Background We previously discovered that small extracellular vesicles (sEV) isolated from melanoma cells produce immunosuppressive adenosine (ADO) via the ATP→ADP→AMP→ADO pathway and that CD73 is the 'gateway' ecto-nucleotidase used by melanoma sEV to generate ADO. Here we extend these findings to CD39(+)CD73(+) and CD39(+)CD73(-) sEV from breast cancer cells. Materials and methods sEV were isolated from supernatants of a triple-negative breast cancer cell line ± the genetic knockout of CD73. A newly developed high pressure liquid chromatography assay with fluorescence detection was used for assessment of N6-etheno-AMP conversion to N6-etheno-ADO by sEV. PSB12379 (selective CD73 inhibitor) and anti-CD73 antibodies were used to inhibit/neutralize CD73 activity in sEV. Results Untreated sEV isolated from CD39(+)CD73(+) breast cancer cells readily metabolized N6-etheno-AMP to N6-etheno-ADO, and this activity was abolished by PSB12379. sEV from CD39(+)CD73(-) breast cancer cells were unable to metabolize N6-etheno-AMP to N6-etheno-ADO. Effects of three different anti-CD73 antibodies on CD73 activity in sEV were examined. Only one antibody, the direct binding pocket inhibitor of CD73, but not antibodies that allosterically inhibit recombinant CD73, attenuated conversion of N6-etheno-AMP to N6-etheno-ADO by cancer-derived sEV. Conclusions In breast cancer-derived sEV, as in melanoma-derived sEV, CD73 is the gateway enzyme regulating ADO formation from upstream AMP. The quantitation in sEV of N6-etheno-AMP conversion to N6-etheno-ADO ± neutralizing anti-CD73 antibodies provides a measure of the ability of these antibodies to suppress ADO production and could potentially serve as a personalized predictor of CD73 activity in patients with cancer.
Collapse
Affiliation(s)
- T.L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - S. Sehra
- Incyte Corporation, Wilmington, USA
| | | | - M. Guha
- Incyte Corporation, Wilmington, USA
| | | | | | - E.K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
2
|
Li X, Fan F, Zhang T. Efficacy and influencing factors of immunotherapy crossover combined with targeted therapy in advanced esophageal cancer patients following first-line chemotherapy combined with immunotherapy failure. Am J Cancer Res 2025; 15:1321-1334. [PMID: 40226448 PMCID: PMC11982723 DOI: 10.62347/gboq6704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Advanced esophageal cancer presents significant treatment challenges, especially after immunochemotherapy failure. This study evaluates the efficacy of further treatment with combination chemotherapy versus combination immunotherapy crossover in terms of tumor regression, quality of life, and identifies factors influencing treatment outcomes. METHODS In a retrospective case-control study, clinical data from 293 patients with advanced esophageal cancer treated at Shanxi Province Cancer Hospital between February 2021 and February 2023 were analyzed. Patients excluded from radical resection due to failure of first-line immunotherapy were divided into two groups: 95 received combination chemotherapy with Irinotecan and Tigio (S-1, Tegafur/Gimeracil/Oteracil Potassium), and 198 underwent Anlotinib targeted therapy combined with immunotherapy crossover. Treatment efficacy was assessed using tumor regression grading (TRG), and quality of life was evaluated using EORTC QLQ-C30 and QLQ-OES18 scales. Potential factors affecting treatment efficacy were examined using multivariate logistic regression analysis. RESULTS Baseline characteristics, including age, gender, body mass index (BMI), and history of smoking and alcohol consumption, were comparable between the two groups. TRG showed no significant differences in distribution, with objective response rates of 40% in the Irinotecan/S-1 group and 44.44% in the combined immunotherapy crossover group (P = 0.472). However, quality of life measures indicated superior outcomes from immunotherapy crossover in physical (P = 0.024), emotional (P = 0.002), and general health scores (P = 0.003). Factors negatively impacting treatment success included male gender, smoking, alcohol consumption history, and certain tumor locations. Elevated CEA levels positively correlated with treatment efficacy. Logistic regression analysis identified male gender (OR, 2.109; P = 0.021), smoking (OR, 2.575; P = 0.003), alcohol consumption (OR, 1.995; P = 0.043), and CEA levels (OR, 0.742; P = 0.017) as significant predictors of treatment efficacy. CONCLUSION Immunotherapy combined with targeted therapy and chemotherapy alone showed comparable efficacy in tumor regression. However, immunotherapy combined with targeted therapy improved certain aspects of quality of life. Factors such as gender, lifestyle habits, and CEA levels can significantly influence treatment outcomes.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive CancerTianjin 300060, China
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Fan Fan
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive CancerTianjin 300060, China
- Department of Hepatobiliary Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| |
Collapse
|
3
|
Bai J, Wan Z, Zhou W, Wang L, Lou W, Zhang Y, Jin H. Global trends and emerging insights in BRAF and MEK inhibitor resistance in melanoma: a bibliometric analysis. Front Mol Biosci 2025; 12:1538743. [PMID: 39897423 PMCID: PMC11782018 DOI: 10.3389/fmolb.2025.1538743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to perform a comprehensive bibliometric analysis of global research on BRAF and MEK inhibitor resistance in melanoma, identifying key research trends, influential contributors, and emerging themes from 2003 to 2024. Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) database to retrieve publications related to BRAF and MEK inhibitor resistance from 1 January 2003, to 1 September 2024. Bibliometric analyses, including publication trends, citation networks, and keyword co-occurrence patterns, were performed using VOSviewer and CiteSpace. Collaborative networks, co-cited references, and keyword burst analyses were mapped to uncover shifts in research focus and global cooperation. Results A total of 3,503 documents, including 2,781 research articles and 722 review papers, were analyzed, highlighting significant growth in this field. The United States, China, and Italy led in publication volume and citation impact, with Harvard University and the University of California System among the top contributing institutions. Research output showed three phases of growth, peaking in 2020. Keyword and co-citation analyses revealed a transition from early focus on BRAF mutations and MAPK pathway activation to recent emphasis on immunotherapy, combination therapies, and non-apoptotic cell death mechanisms like ferroptosis and pyroptosis. These trends reflect the evolving priorities and innovative approaches shaping the field of resistance to BRAF and MEK inhibitors in melanoma. Conclusion Research on BRAF and MEK inhibitor resistance has evolved significantly. This analysis provides a strategic framework for future investigations, guiding the development of innovative, multi-modal approaches to improve treatment outcomes for melanoma patients.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanru Zhou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
5
|
Xie J, Zhang P, Xu X, Zhou X, Zhao S, Zhang M, Qi M. PANoptosis-related signature in melanoma: Transcriptomic mapping and clinical prognostication. ENVIRONMENTAL TOXICOLOGY 2024; 39:2545-2559. [PMID: 38189554 DOI: 10.1002/tox.24126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024]
Abstract
Programmed cell death plays a pivotal role in maintaining tissue homeostasis, and recent advancements in cell biology have uncovered PANoptosis-a novel paradigm integrating pyroptosis, apoptosis, and necroptosis. This study investigates the implications of PANoptosis in melanoma, a formidable skin cancer known for its metastatic potential and resistance to conventional therapies. Leveraging bulk and single-cell transcriptome analyses, machine learning modeling, and immune correlation assessments, we unveil the molecular intricacies of PANoptosis in melanoma. Single-cell sequencing identifies diverse cell types involved in PANoptosis, while bulk transcriptome analysis reveals key gene sets correlated with PANoptosis. Machine learning algorithms construct a robust prognostic model, demonstrating consistent predictive power across diverse cohorts. Patients with different cohorts can be divided into high-risk and low-risk groups according to this PANoptosis score, with the high-risk group having a significantly worse prognosis. Immune correlation analyses unveil a link between PANoptosis and immunotherapy response, with potential therapeutic implications. Mutation analysis and enrichment studies provide insights into the mutational landscape associated with PANoptosis. Finally, we used cell experiments to verify the expression and function of key gene PARVA, showing that PARVA was highly expressed in melanoma cell lines, and after PARVA is knocked down, cell invasion, migration, and colony formation ability were significantly decreased. This study advances our understanding of PANoptosis in melanoma, offering a comprehensive framework for targeted therapeutic interventions and personalized medicine strategies in combating this aggressive malignancy.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaolong Xu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Min Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Sugi T, Katoh Y, Ikeda T, Seta D, Iwata T, Nishio H, Sugawara M, Kato D, Katoh K, Kawana K, Yaguchi T, Kawakami Y, Hirai S. SCD1 inhibition enhances the effector functions of CD8 + T cells via ACAT1-dependent reduction of esterified cholesterol. Cancer Sci 2024; 115:48-58. [PMID: 37879607 PMCID: PMC10823278 DOI: 10.1111/cas.15999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
We previously reported that the inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor function of CD8+ T cells indirectly via restoring production of DC recruiting chemokines by cancer cells and subsequent induction of antitumor CD8+ T cells. In this study, we investigated the molecular mechanism of direct enhancing effects of SCD1 inhibitors on CD8+ T cells. In vitro treatment of CD8+ T cells with SCD1 inhibitors enhanced IFN-γ production and cytotoxic activity of T cells along with decreased oleic acid and esterified cholesterol, which is generated by cholesterol esterase, acetyl-CoA acetyltransferase 1 (ACAT1), in CD8+ T cells. The addition of oleic acid or cholesteryl oleate reversed the enhanced functions of CD8+ T cells treated with SCD1 inhibitors. Systemic administration of SCD1 inhibitor to MCA205 tumor-bearing mice enhanced IFN-γ production of tumor-infiltrating CD8+ T cells, in which oleic acid and esterified cholesterol, but not cholesterol, were decreased. These results indicated that SCD1 suppressed effector functions of CD8+ T cells through the increased esterified cholesterol in an ACAT1-dependent manner, and SCD1 inhibition enhanced T cell activity directly through decreased esterified cholesterol. Finally, SCD1 inhibitors or ACAT1 inhibitors synergistically enhanced the antitumor effects of anti-PD-1 antibody therapy or CAR-T cell therapy in mouse tumor models. Therefore, the SCD1-ACAT1 axis is regulating effector functions of CD8+ T cells, and SCD1 inhibitors, and ACAT1 inhibitors are attractive drugs for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshihiro Sugi
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Yuki Katoh
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Toshikatsu Ikeda
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| | - Daichi Seta
- Nihon University School of MedicineTokyoJapan
| | - Takashi Iwata
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Hiroshi Nishio
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Masaki Sugawara
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Daiki Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kanoko Katoh
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Kei Kawana
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Tomonori Yaguchi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and ImmunobiologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yutaka Kawakami
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
7
|
Sousa P, Tavares-Valente D, Amorim M, Azevedo-Silva J, Pintado M, Fernandes J. β-Glucan extracts as high-value multifunctional ingredients for skin health: A review. Carbohydr Polym 2023; 322:121329. [PMID: 37839841 DOI: 10.1016/j.carbpol.2023.121329] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
β-Glucans, which are naturally present in cereals, yeast, and mushrooms, have gained attention as a potential natural source for functional foods and pharmaceuticals. Due to the availability of β-glucans from several sources, different extraction methods can be employed to obtain high purity extracts that can be further modified to enhance their solubility or other biological properties. Apart from their known ability to interact with the immune system, β-glucans possess specific properties that could benefit overall skin health and prevent age-related signs, including soothing and antioxidant activities. As a result, the use of β-glucans to mitigate damage caused by environmental stressors or skin-related issues that accelerate skin aging or trigger chronic inflammation may represent a promising, natural, eco-friendly, and cost-effective approach to maintaining skin homeostasis balance. This review outlines β-glucan extraction methodologies, molecular structure, functionalization approaches, and explores skin-related benefits of β-glucans, along with an overview of related products in the market.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Inozume T, Fukushima S. Clues for developing next-generation cancer immunotherapy. Exp Dermatol 2023; 32:238-239. [PMID: 36707074 DOI: 10.1111/exd.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Affiliation(s)
- Takashi Inozume
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|