1
|
Xu H, Dai X, Wang X, Yue J, Gong X, Bai Y, Yan L, Li Y, Li Y. The impact of high intrapatient variability of tacrolimus in peripheral blood mononuclear cells on the outcomes of kidney transplantation. Eur J Pharmacol 2025; 996:177570. [PMID: 40185324 DOI: 10.1016/j.ejphar.2025.177570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Tacrolimus (TAC) is a key immunosuppressive agent for kidney transplantation, but its narrow therapeutic window and high intra-patient variability (IPV) complicate therapeutic drug monitoring. The clinical significance of PBMC-based IPV in predicting graft rejection and infection remains unclear. METHODS A total of 47 renal transplant recipients were enrolled. Intracellular TAC concentrations were analyzed and quantified using liquid chromatography-tandem mass spectrometry. The primary endpoint was the occurrence of the first adverse event, including acute rejection or infection of any etiology. The IPV of peripheral blood mononuclear cells (IPVPBMC) and whole blood (IPVWB) was calculated as the coefficient of variation of dose-corrected concentrations from day 14 to month 12 post-transplantation. A Cox proportional hazards model was employed to identify risk factors associated with kidney transplant outcomes. RESULTS Within the first year post-transplantation, the incidence of acute rejection was significantly higher in the High-IPVWB group compared to the Low-IPVWB group (P = 0.024). Moreover, the IPVWB in the rejection group was significantly higher than in the stable group (P = 0.034), and High-IPVWB and extended post-operative hospital stay served as independent predictors of rejection within the first year. Additionally, High-IPVPBMC, deceased donors, and longer hospital stay were the main risk factors for early infection following transplantation. CONCLUSIONS Both IPVPBMC and IPVWB are significantly associated with graft rejection and infection. Monitoring IPVPBMC and IPVWB within the first six months post-transplantation could help identify high-risk patients and improve clinical management strategies.
Collapse
Affiliation(s)
- Huan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqiao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Yue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingxin Gong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yamei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Duan B, Gao J, Ge B, Wu S, Yu J. Development and Validation of a Nomogram for Predicting Subtherapeutic Tacrolimus Blood Levels in Renal Transplant Recipients: A Multivariate Logistic Regression Analysis. Transplant Proc 2025; 57:529-537. [PMID: 40082170 DOI: 10.1016/j.transproceed.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
This study constructs a nomogram risk prediction model to identify factors affecting subtherapeutic tacrolimus (FK506) blood concentrations in postrenal transplant patients, enhancing clinical management. Data from renal transplant patients treated with tacrolimus from January to December 2023 were analyzed using multivariate logistic regression to identify risk factors. A nomogram model was constructed and validated through cross-validation and bootstrapping. Predictive performance was assessed via receiver operating characteristic curve and Hosmer- Lemeshow test. Among 340 patients, 224 achieved target FK506 concentrations (5-15 ng/mL). Independent risk factors for subtherapeutic levels included white blood cell count ≤4 × 10^9/L, total bilirubin >20 μmol/L, creatinine >73 μmol/L, and blood urea nitrogen ≤7.1 mmol/L. The model's receiver operating characteristic area under the curve was 0.84, with a Hosmer- Lemeshow test P-value of .386, indicating high predictive accuracy and good calibration. The nomogram effectively predicts subtherapeutic FK506 levels, providing a valuable tool for personalized patient management. Future research should refine and externally validate the model.
Collapse
Affiliation(s)
- Bowen Duan
- Department of Pharmacy, Gansu Provincial Hospital, Lan Zhou, China
| | - Jinxian Gao
- Department of Pharmacy, Gansu Provincial Hospital, Lan Zhou, China
| | - Bin Ge
- Department of Pharmacy, Gansu Provincial Hospital, Lan Zhou, China
| | - Shujin Wu
- Department of Pharmacy, Gansu Provincial Hospital, Lan Zhou, China
| | - Jing Yu
- Department of Pharmacy, Gansu Provincial Hospital, Lan Zhou, China.
| |
Collapse
|
3
|
Agergaard K, Thiesson HC, Carstens J, Staatz CE, Järvinen E, Nielsen F, Christensen HD, Juhl‐Sandberg R, Brøsen K, Stage TB, Andersen DT, Kjellsson MC, Bergmann TK. Population pharmacokinetics of tacrolimus whole blood and peripheral blood mononuclear cell concentrations in stable kidney-transplanted patients. Br J Clin Pharmacol 2025; 91:761-773. [PMID: 39390741 PMCID: PMC11862786 DOI: 10.1111/bcp.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
AIM Therapeutic drug monitoring of tacrolimus based on whole blood drug concentrations is routinely performed. The concentration of tacrolimus in peripheral blood mononuclear cells (PMBCs) is likely to better reflect drug exposure at the treatment target site. We aimed to describe the relationship between tacrolimus whole blood and PBMC concentrations, and the influence of patient characteristics on this relationship by developing a population pharmacokinetic model. METHODS We prospectively enrolled 63 stable adult kidney-transplanted patients and collected dense (12-h, n = 18) or sparse (4-h, n = 45) pharmacokinetic profiles of tacrolimus. PBMCs were isolated from whole blood (Ficoll density gradient centrifugation), and drug concentrations in whole blood and PBMCs were analysed using liquid chromatography-mass spectrometry. Patient genotype (CYP3A4/5, ABCB1, NR1I2) was assessed with PCR. Population pharmacokinetic modelling and statistical evaluation was performed using NONMEM. RESULTS Tacrolimus whole blood concentrations were well described using a two-compartment pharmacokinetic model with a lag-time and first-order absorption and elimination. Tacrolimus PBMC concentrations were best estimated from whole blood concentrations with the use of a scaling factor, the ratio of whole blood to PBMC concentrations (RC:PBMC), which was the extent of tacrolimus distribution into PBMC. CYP3A5*1 non-expressors and NR1I2-25 385T allele expressors demonstrated higher RC:PBMC ratios of 42.4% and 60.7%, respectively. CONCLUSION Tacrolimus PBMC concentration could not be accurately predicted from whole blood concentrations and covariates because of significant residual unexplained variability in the distribution of tacrolimus into PBMCs and may need to be measured directly if required for future studies.
Collapse
Affiliation(s)
- Katrine Agergaard
- Department of Regional Health ResearchUniversity of Southern DenmarkEsbjergDenmark
- Department of NephrologyOdense University HospitalOdenseDenmark
| | | | - Jan Carstens
- Department of NephrologyOdense University HospitalOdenseDenmark
| | | | - Erkka Järvinen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Kim Brøsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Dorte Terp Andersen
- Department of Clinical Molecular BiologyUniversity Hospital of Southern DenmarkEsbjergDenmark
| | - Maria C. Kjellsson
- Pharmacometrics Research Group, Department of PharmacyUppsala UniversityUppsalaSweden
| | - Troels K. Bergmann
- Department of Regional Health ResearchUniversity of Southern DenmarkEsbjergDenmark
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
| |
Collapse
|
4
|
Sallustio BC. Alternate Sampling Matrices for Therapeutic Drug Monitoring of Immunosuppressants. Ther Drug Monit 2025; 47:105-117. [PMID: 39592182 DOI: 10.1097/ftd.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Immunosuppressant (IS) therapeutic drug monitoring (TDM) relies on measuring mostly pharmacologically inactive erythrocyte-bound and/or plasma protein-bound drug levels. Variations in hematocrit and plasma protein levels complicate interpretation of blood calcineurin inhibitor (CNI) and inhibitors of the molecular target of rapamycin (mTORi) concentrations. Variable binding of mycophenolic acid (MPA) to albumin similarly complicates its TDM in plasma. A different matrix may improve IS concentration-response relationships and better reflect exposures at sites of action. METHODS This review explores the evidence for IS TDM using peripheral blood mononuclear cell (PBMC), graft tissue, and total or unbound plasma concentrations. RESULTS Tandem mass spectrometry provides the sensitivity for assessing these matrices. But several challenges must be addressed, including minimizing hemolysis during blood collection, preventing IS efflux during PBMC preparation, and determining the need for further purification of the PBMC fraction. Assessing and reducing nonspecific binding during separation of unbound IS are also necessary, especially for lipophilic CNIs/mTORi. Although TDM using PBMC or unbound plasma concentrations may not be feasible due to increased costs, plasma CNI/mTORi levels may be more easily integrated into routine TDM. However, no validated TDM targets currently exist, and published models to adjust blood CNI/mTORi concentrations for hematocrit or to predict PBMC, and total and unbound plasma IS concentrations have yet to be validated in terms of measured concentrations or prediction of clinical outcomes. CONCLUSIONS Even if CNI/mTORi measurements in novel matrices do not become routine, they may help refine pharmacokinetic-pharmacodynamic relationships and improve mathematical models for TDM using whole blood. Notably, there is evidence to support measuring unbound MPA in patients with severe renal dysfunction, hypoalbuminemia, and hyperbilirubinemia, with some proposed TDM targets.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia ; and
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Truffot A, Weinhard J, Dessaud P, Morand P, Rostaing L, Stanke-Labesque F, Fonrose X, Germi R, Jouve T. Impact of tacrolimus on interferon gamma ELISpot assay results for the assessment of T-cell immunity: Proof-of-concept. Int J Immunopathol Pharmacol 2025; 39:3946320251325062. [PMID: 40071836 PMCID: PMC11905027 DOI: 10.1177/03946320251325062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
SOT patients require immunosuppressors to avoid graft rejection. Therapeutic drug monitoring is insufficient to find the optimal balance with immunosuppression. The evaluation of cell-mediated immunity by enzyme-linked immunospot (ELISpot) assay enumerating interferon-gamma (IFN-γ) is increasingly use. ELISpot assays are performed on peripheral blood mononuclear cells (PBMC) isolated from blood and brought into contact with specific peptides in an immunosuppressor-free environment. This study aims to determine the in vitro diffusion of tacrolimus in PBMC and to assess whether prior in vitro incubation of PBMC with tacrolimus modifies the IFN-γ ELISpot results when assessing the T-cell immune response. PBMC from healthy volunteers were obtained. Tacrolimus was added to the ELISpot wells at increasing concentration and quantification was obtained using liquid chromatography mass spectrometry. Results showed that the in vitro PBMC diffusion rate of tacrolimus was measured at 32%. A decrease in T-cell reactivity occurred with increasing tacrolimus concentration. The intra-PBMC concentration of tacrolimus able to inhibit 50% of T-cell reactivity was 163 pg/106 PBMC, which is in the range of the in vivo intra-PBMC concentration in SOT recipients. T-cell functional assessment using ELISpot in patients treated with immunosuppressors may require the addition of immunosuppressors in vitro to better reflect the in vivo situation.
Collapse
Affiliation(s)
- Aurélie Truffot
- CNRS, CEA, IRIG IBS, University of Grenoble Alpes, Grenoble, France
| | - Jules Weinhard
- CNRS, Inserm, CHU Grenoble Alpes IAB, University of Grenoble Alpes, Grenoble, France
| | - Pauline Dessaud
- CNRS, CEA, IRIG IBS, University of Grenoble Alpes, Grenoble, France
| | - Patrice Morand
- CNRS, CEA, IRIG IBS, University of Grenoble Alpes, Grenoble, France
| | - Lionel Rostaing
- CNRS, Inserm, CHU Grenoble Alpes IAB, University of Grenoble Alpes, Grenoble, France
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, CHU Grenoble Alpes, Grenoble, France
| | - Xavier Fonrose
- Univ. Grenoble Alpes, Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, CHU Grenoble Alpes, Grenoble, France
| | - Raphaële Germi
- CNRS, CEA, IRIG IBS, University of Grenoble Alpes, Grenoble, France
| | - Thomas Jouve
- CNRS, Inserm, CHU Grenoble Alpes IAB, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Qin W, Chen W, Wang X, Zhang D, Du W, Li S, Li B, Zuo X, Wang X. A highly sensitive method for determination of tacrolimus in peripheral blood mononuclear cells by nano liquid chromatography-high resolution accurate mass spectrometry. J Chromatogr A 2023; 1706:464259. [PMID: 37567001 DOI: 10.1016/j.chroma.2023.464259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The determination of intracellular tacrolimus concentration in peripheral blood mononuclear cells (PBMCs) is crucial for assessing the effect-site concentration of tacrolimus. Analytical methods previously reported required a minimum of 3 mL of whole blood sample for measuring the tacrolimus concentration. In this study, we developed a highly sensitive method using EASY nLC 1200 combined with Q Exactive orbitrap mass spectrometer for detecting tacrolimus in PBMCs, requiring only 0.5-2 mL of sample. Furthermore, we compared two primary normalization methods for PBMCs tacrolimus concentration using Passing-Bablok regression, Bland-Altman analysis, Spearman's rank correlation, and Mountain plot. The newly established method was employed to compare tacrolimus concentrations in whole blood and PBMCs among 194 lung transplant recipients. The developed method exhibited high sensitivity with a lower limit of quantitation at 5 pg/mL, and excellent intra- and inter-days accuracy and precision. The comparison between different normalization methods for PBMCs tacrolimus concentration revealed a strong correlation between PBMCs count and intracellular protein amount within these cells. This finding suggests that both PBMCs count and intracellular protein amount can be used for normalizing intracellular tacrolimus levels and can be mutually converted. However, a weaker correlation was observed between PBMCs and whole-blood tacrolimus concentrations in lung transplant recipients, warranting further investigation. The method reported herein enables the quantification of PBMCs tacrolimus concentration using smaller volumes of whole blood samples, which has significant implications for both patients and laboratory personnel.
Collapse
Affiliation(s)
- Wei Qin
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenqian Chen
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoxing Wang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dan Zhang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenwen Du
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu Li
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bo Li
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xianbo Zuo
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Xiaoxue Wang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
7
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
8
|
De Nicolò A, Pinon M, Palermiti A, Nonnato A, Manca A, Mula J, Catalano S, Tandoi F, Romagnoli R, D'Avolio A, Calvo PL. Monitoring Tacrolimus Concentrations in Whole Blood and Peripheral Blood Mononuclear Cells: Inter- and Intra-Patient Variability in a Cohort of Pediatric Patients. Front Pharmacol 2021; 12:750433. [PMID: 34803692 PMCID: PMC8602893 DOI: 10.3389/fphar.2021.750433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tacrolimus (TAC) is a first-choice immunosuppressant for solid organ transplantation, characterized by high potential for drug-drug interactions, significant inter- and intra-patient variability, and narrow therapeutic index. Therapeutic drug monitoring (TDM) of TAC concentrations in whole blood (WB) is capable of reducing the incidence of adverse events. Since TAC acts within lymphocytes, its monitoring in peripheral blood mononuclear cells (PBMC) may represent a valid future alternative for TDM. Nevertheless, TAC intracellular concentrations and their variability are poorly described, particularly in the pediatric context. Therefore, our aim was describing TAC concentrations in WB and PBMC and their variability in a cohort of pediatric patients undergoing constant immunosuppressive maintenance therapy, after liver transplantation. TAC intra-PBMCs quantification was performed through a validated UHPLC–MS/MS assay over a period of 2–3 months. There were 27 patients included in this study. No significant TAC changes in intracellular concentrations were observed (p = 0.710), with a median percent change of −0.1% (IQR −22.4%–+46.9%) between timings: this intra-individual variability was similar to the one in WB, −2.9% (IQR −29.4–+42.1; p = 0.902). Among different patients, TAC weight-adjusted dose and age appeared to be significant predictors of TAC concentrations in WB and PBMC. Intra-individual seasonal variation of TAC concentrations in WB, but not in PBMC, have been observed. These data show that the intra-individual variability in TAC intracellular exposure is comparable to the one observed in WB. This opens the way for further studies aiming at the identification of therapeutic ranges for TAC intra-PBMC concentrations.
Collapse
Affiliation(s)
- Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Unit, Department of Diagnostic Laboratory, A.O.U. Città della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Catalano
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Tandoi
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
9
|
Sallustio BC. Monitoring Intra-cellular Tacrolimus Concentrations in Solid Organ Transplantation: Use of Peripheral Blood Mononuclear Cells and Graft Biopsy Tissue. Front Pharmacol 2021; 12:733285. [PMID: 34764868 PMCID: PMC8576179 DOI: 10.3389/fphar.2021.733285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Tacrolimus is an essential immunosuppressant for the prevention of rejection in solid organ transplantation. Its low therapeutic index and high pharmacokinetic variability necessitates therapeutic drug monitoring (TDM) to individualise dose. However, rejection and toxicity still occur in transplant recipients with blood tacrolimus trough concentrations (C0) within the target ranges. Peripheral blood mononuclear cells (PBMC) have been investigated as surrogates for tacrolimus's site of action (lymphocytes) and measuring allograft tacrolimus concentrations has also been explored for predicting rejection or nephrotoxicity. There are relatively weak correlations between blood and PBMC or graft tacrolimus concentrations. Haematocrit is the only consistent significant (albeit weak) determinant of tacrolimus distribution between blood and PBMC in both liver and renal transplant recipients. In contrast, the role of ABCB1 pharmacogenetics is contradictory. With respect to distribution into allograft tissue, studies report no, or poor, correlations between blood and graft tacrolimus concentrations. Two studies observed no effect of donor ABCB1 or CYP3A5 pharmacogenetics on the relationship between blood and renal graft tacrolimus concentrations and only one group has reported an association between donor ABCB1 polymorphisms and hepatic graft tacrolimus concentrations. Several studies describe significant correlations between in vivo PBMC tacrolimus concentrations and ex vivo T-cell activation or calcineurin activity. Older studies provide evidence of a strong predictive value of PBMC C0 and allograft tacrolimus C0 (but not blood C0) with respect to rejection in liver transplant recipients administered tacrolimus with/without a steroid. However, these results have not been independently replicated in liver or other transplants using current triple maintenance immunosuppression. Only one study has reported a possible association between renal graft tacrolimus concentrations and acute tacrolimus nephrotoxicity. Thus, well-designed and powered prospective clinical studies are still required to determine whether measuring tacrolimus PBMC or graft concentrations offers a significant benefit compared to current TDM.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia.,Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Measuring Intracellular Concentrations of Calcineurin Inhibitors: Expert Consensus from the International Association of Therapeutic Drug Monitoring and Clinical Toxicology Expert Panel. Ther Drug Monit 2021; 42:665-670. [PMID: 32520841 DOI: 10.1097/ftd.0000000000000780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of the 2 calcineurin inhibitors (CNIs), tacrolimus (TAC) and cyclosporin A, has resulted in improvements in the management of patients who have undergone solid organ transplantation. As a result of TDM, acute rejection (AR) rates and treatment-related toxicities have been reduced. Irrespective, AR and toxicity still occur in patients who have undergone transplantation, showing blood CNI concentrations within the therapeutic range. Moreover, the AR rate is no longer decreasing. Hence, smarter TDM approaches are necessary. Because CNIs exert their action inside T lymphocytes, intracellular CNIs may be a promising candidate for improving therapeutic outcomes. The intracellular CNI concentration may be more directly related to the drug effect and has been favorably compared with the standard, whole-blood TDM for TAC in liver transplant recipients. However, measuring intracellular CNIs concentrations is not without pitfalls at both the preanalytical and analytical stages, and standardization seems essential in this area. To date, there are no guidelines for the TDM of intracellular CNI concentrations. METHODS Under the auspices of the International Association of TDM and Clinical Toxicology and its Immunosuppressive Drug committees, a group of leading investigators in this field have shared experiences and have presented preanalytical and analytical recommendations for measuring intracellular CNI concentrations.
Collapse
|
11
|
Clinical Pharmacokinetics and Impact of Hematocrit on Monitoring and Dosing of Tacrolimus Early After Heart and Lung Transplantation. Clin Pharmacokinet 2021; 59:403-408. [PMID: 31820394 PMCID: PMC7109168 DOI: 10.1007/s40262-019-00846-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The calcineurin inhibitor tacrolimus is an effective immunosuppressant and is extensively used in solid organ transplantation. In the first week after heart and lung transplantation, tacrolimus dosing is difficult due to considerable physiological changes because of clinical instability, and toxicity often occurs, even when tacrolimus concentrations are within the therapeutic range. The physiological and pharmacokinetic changes are outlined. Excessive variability in bioavailability may lead to higher interoccasion (dose-to-dose) variability than interindividual variability of pharmacokinetic parameters. Intravenous tacrolimus dosing may circumvent this high variability in bioavailability. Moreover, the interpretation of whole-blood concentrations is discussed. The unbound concentration is related to hematocrit, and changes in hematocrit may increase toxicity, even within the therapeutic range of whole-blood concentrations. Therefore, in clinically unstable patients with varying hematocrit, aiming at the lower therapeutic level is recommended and tacrolimus personalized dosing based on hematocrit-corrected whole-blood concentrations may be used to control the unbound tacrolimus plasma concentrations and subsequently reduce toxicity.
Collapse
|
12
|
Miao Q, Yan L, Zhou Y, Li Y, Zou Y, Wang L, Bai Y, Zhang J. Association of genetic variants in TPMT, ITPA, and NUDT15 with azathioprine-induced myelosuppression in southwest china patients with autoimmune hepatitis. Sci Rep 2021; 11:7984. [PMID: 33846471 PMCID: PMC8042108 DOI: 10.1038/s41598-021-87095-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the influence of TPMT*3C, ITPA, NUDT15, and 6-thioguanine nucleotides (6-TGN) on azathioprine (AZA)-induced myelosuppression in Southwest China patients with autoimmune hepatitis (AIH). A total of 113 Chinese patients with AIH receiving AZA maintenance treatment were evaluated. The relevant clinical data of the patients were collected from the hospital information system. Genotyping of TPMT*3C(rs1142345), ITPA (rs1127354) and NUDT15(rs116855232) was conducted using a TaqMan double fluorescent probe. The concentration of 6-TGN was determined using UPLC-MS/MS. Among AIH patients treated with AZA, 40 (35.4%) exhibited different degrees of myelosuppression. The NUDT15 variant was associated with leukopenia (P = 8.26 × 10–7; OR = 7.5; 95% CI 3.08–18.3) and neutropenia (P = 3.54 × 10–6; OR = 8.05; 95% CI 2.96–21.9); however, no significant association with myelosuppression was observed for TPMT*3C and ITPA variants (P > 0.05). There was no significant difference in 6-TGN concentration between AIH patients with or without myelosuppression (P = 0.556), nor was there a significant difference between patients with variant alleles of TPMT*3C, ITPA, or NUDT15 and wild-type patients (P > 0.05). Interestingly, it was found that patients with a lower BMI had higher adjusted 6-TGN levels and a higher incidence of myelosuppression (P = 0.026 and 0.003). This study confirmed that NUDT15 variants are a potential independent risk predictor for AZA-induced leukopenia and neutropenia. BMI may be a crucial non-genetic factor that affects the concentration of AZA metabolites and myelosuppression. In addition, the 6-TGN concentration in red blood cells does not reflect the toxicity of AZA treatment, and new biomarkers for AZA therapeutic drug monitoring need further research.
Collapse
Affiliation(s)
- Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Lin Yan
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yanhong Zhou
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yi Li
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yuangao Zou
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China.
| | - Junlong Zhang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
13
|
Modiwala M, Jadav T, Sahu AK, Tekade RK, Sengupta P. A Critical Review on Advancement in Analytical Strategies for the Quantification of Clinically Relevant Biological Transporters. Crit Rev Anal Chem 2021; 52:1557-1571. [PMID: 33691566 DOI: 10.1080/10408347.2021.1891859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Success of a drug discovery program is highly dependent on rapid scientific advancement and periodic inclusion of sensitive and specific analytical techniques. Biological membrane transporters can significantly alter the bioavailability of a molecule in its actual site of action. Expression of transporter proteins responsible for drug transport is extremely low in the biological system. Therefore, proper scientific planning in selection of their quantitative analytical technique is essential. This article discusses critical advancement in the analytical strategies for quantification of clinically relevant biological transporters for the drugs. Article cross-talked key planning and execution strategies concerning analytical quantification of the transporters during drug discovery programs.
Collapse
Affiliation(s)
- Mustafa Modiwala
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
14
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
15
|
Early impact of donor CYP3A5 genotype and Graft-to-Recipient Weight Ratio on tacrolimus pharmacokinetics in pediatric liver transplant patients. Sci Rep 2021; 11:443. [PMID: 33432012 PMCID: PMC7801660 DOI: 10.1038/s41598-020-79574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Tacrolimus (TAC) pharmacokinetics is influenced by the donor CYP3A5 genotype and the age of pediatric liver recipients. However, an optimization of a genotype-based algorithm for determining TAC starting is needed to earlier achieve stable target levels. As the graft itself is responsible for its metabolism, the Graft-to-Recipient Weight Ratio (GRWR) might play a role in TAC dose requirements. A single-center study was carried out in a cohort of 49 pediatric recipients to analyse the impact of patient and graft characteristics on TAC pharmacokinetics during the first 15 post-transplant days. Children < 2 years received grafts with a significantly higher GRWR (4.2%) than children between 2–8 (2.6%) and over 8 (2.7%). TAC concentration/weight-adjusted dose ratio was significantly lower in recipients from CYP3A5*1/*3 donors or with extra-large (GRWR > 5%) or large (GRWR 3–5%) grafts. The donor CYP3A5 genotype and GRWR were the only significant predictors of the TAC weight adjusted doses. Patients with a GRWR > 4% had a higher risk of acute rejection, observed in 20/49 (41%) patients. In conclusion, TAC starting dose could be guided according to the donor CYP3A5 genotype and GRWR, allowing for a quicker achievement of target concentrations and eventually reducing the risk of rejection.
Collapse
|
16
|
Tron C, Woillard JB, Houssel-Debry P, David V, Jezequel C, Rayar M, Balakirouchenane D, Blanchet B, Debord J, Petitcollin A, Roussel M, Verdier MC, Bellissant E, Lemaitre F. Pharmacogenetic-Whole blood and intracellular pharmacokinetic-Pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients. PLoS One 2020; 15:e0230195. [PMID: 32163483 PMCID: PMC7067455 DOI: 10.1371/journal.pone.0230195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Tacrolimus (TAC) is the cornerstone of immunosuppressive therapy in liver transplantation. This study aimed at elucidating the interplay between pharmacogenetic determinants of TAC whole blood and intracellular exposures as well as the pharmacokinetic-pharmacodynamic relationship of TAC in both compartments. Complete pharmacokinetic profiles (Predose, and 20 min, 40 min, 1h, 2h, 3h, 4h, 6h, 8h, 12h post drug intake) of twice daily TAC in whole blood and peripheral blood mononuclear cells (PBMC) were collected in 32 liver transplanted patients in the first ten days post transplantation. A non-parametric population pharmacokinetic model was applied to explore TAC pharmacokinetics in blood and PBMC. Concurrently, calcineurin activity was measured in PBMC. Influence of donor and recipient genetic polymorphisms of ABCB1, CYP3A4 and CYP3A5 on TAC exposure was assessed. Recipient ABCB1 polymorphisms 1199G>A could influence TAC whole blood and intracellular exposure (p<0.05). No association was found between CYP3A4 or CYP3A5 genotypes and TAC whole blood or intracellular concentrations. Finally, intra-PBMC calcineurin activity appeared incompletely inhibited by TAC and less than 50% of patients were expected to achieve intracellular IC50 concentration (100 pg/millions of cells) at therapeutic whole blood concentration (i.e.: 4–10 ng/mL). Together, these data suggest that personalized medicine regarding TAC therapy might be optimized by ABCB1 pharmacogenetic biomarkers and by monitoring intracellular concentration whereas the relationship between intracellular TAC exposure and pharmacodynamics biomarkers more specific than calcineurin activity should be further investigated.
Collapse
Affiliation(s)
- Camille Tron
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- * E-mail:
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
- Limoges University, Limoges, France
| | - Pauline Houssel-Debry
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Véronique David
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France
- CNRS, UMR6290, IGDR, Rennes, France
| | - Caroline Jezequel
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Michel Rayar
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - David Balakirouchenane
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
| | - Benoit Blanchet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
- CNRS, UMR8638, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Jean Debord
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
| | | | - Mickaël Roussel
- Haematology Laboratory, Rennes University Hospital, Rennes, France
| | - Marie-Clémence Verdier
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Eric Bellissant
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Florian Lemaitre
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| |
Collapse
|