1
|
Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F. A mini-review on anticancer-related properties of azithromycin and its potential activities in overcoming the challenges of glioblastoma. Fundam Clin Pharmacol 2023; 37:918-927. [PMID: 37069134 DOI: 10.1111/fcp.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
The resistance, plasticity and heterogeneity of cancer cells, including glioblastoma (GB) cells, have prompted the investigation of various agents for possible adjuncts and alternatives to existing therapies. This includes a macrolide antibiotic, azithromycin (AZI). It possesses intriguing anticancer properties in a range of cancer models in vitro, such as antiproliferative, pro-apoptotic, anti-autophagy and anti-angiogenic effects. In fact, AZI is renowned for its ability to eradicate cancer stem cells by inhibiting mitochondrial biogenesis and respiration. AZI-containing regimens in cancer patients for different purposes have shown favourable (i.e., attributed to its antibacterial activity) and unfavourable outcomes. Whilst its direct anticancer effects have yet to be clinically proven. To that end, this review provides a summary of AZI anticancer studies and delineates its potential activities in overcoming the challenges of GB.
Collapse
Affiliation(s)
- Siti Nazihahasma Hassan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Eide S, Misztal M, Feng ZP. Interleukin-6 as a marker of Huntington's disease progression: Systematic review and meta-analysis. Brain Behav Immun Health 2023; 30:100635. [PMID: 37215308 PMCID: PMC10196779 DOI: 10.1016/j.bbih.2023.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Huntington's disease (HD) is a rare, inherited disorder with a broad spectrum of manifestations that vary with disease severity and progression. Although genetic testing can readily confirm the initial diagnosis of HD, markers sensitive to HD progression are needed to aid the development of individual treatment plans. The current analysis aims to identify plasma Interleukin-6 (IL-6) as a marker of disease progression in HD patients. A systematic search of PubMed and Medline from conception through October 2021 was conducted. Studies reporting plasma IL-6 levels of mutation-positive HD patients and healthy controls that met inclusion criteria were selected. The search strategy collected 303 studies, 9 of which met analysis inclusion criteria. From included studies, plasma IL-6 levels of 469 individuals with the HD mutation and 206 healthy controls were collected. Plasma IL-6 levels were meta-analytically compared between healthy controls and individuals with the confirmed HD mutation at all stages of disease and correlated to performance on standardized measures of total cognitive and motor function. Plasma IL-6 was significantly increased in HD groups compared to controls (g = 0.73, 95% CI = 0.31,1.16, P < 0.01) and increased significantly throughout most stages of disease progression, notably between pre-manifest and manifest (g = 0.31, 95% CI = 0.04,0.59, P < 0.05) and early and moderate HD stages (g = 0.52, 95% CI = 0.18,0.86, P < 0.01). Significant correlations between plasma IL-6 levels and HD symptomatic progression were identified, with increased cytokine levels associated with more severe motor impairments (r = 0.179, 95% CI = 0.0479,0.304, P = 0.008) and more extreme disabilities in activities of daily living and/or work tasks (r = -0.229, 95% CI = -0.334, -0.119, P < 0.001). Conclusively, plasma IL-6 levels correlate with disease and motor symptom progression and may act as a viable marker for clinical use. Analysis is limited by small study numbers and highlights the need for future work to identify definitive ranges or rates of change of plasma IL-6 levels that correlate to progressive HD disease states.
Collapse
Affiliation(s)
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
3
|
Zhang H, Wen C, Li B, Yan X, Xu Y, Guo J, Hou S, Chang J, Li S, Xiao J. Phenoxyaromatic Acid Analogues as Novel Radiotherapy Sensitizers: Design, Synthesis and Biological Evaluation. Molecules 2022; 27:molecules27082428. [PMID: 35458626 PMCID: PMC9024523 DOI: 10.3390/molecules27082428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Radiotherapy is a vital approach for brain tumor treatment. The standard treatment for glioblastoma (GB) is maximal surgical resection combined with radiotherapy and chemotherapy. However, the non-sensitivity of tumor cells in the hypoxic area of solid tumors to radiotherapy may cause radioresistance. Therefore, radiotherapy sensitizers that increase the oxygen concentration within the tumor are promising for increasing the effectiveness of radiation. Inspired by hemoglobin allosteric oxygen release regulators, a series of novel phenoxyacetic acid analogues were designed and synthesized. A numerical method was applied to determine the activity and safety of newly synthesized compounds. In vitro studies on the evaluation of red blood cells revealed that compounds 19c (∆P50 = 45.50 mmHg) and 19t (∆P50 = 44.38 mmHg) improve the oxygen-releasing property effectively compared to positive control efaproxiral (∆P50 = 36.40 mmHg). Preliminary safety evaluation revealed that 19c exhibited no cytotoxicity towards HEK293 and U87MG cells, while 19t was cytotoxic toward both cells with no selectivity. An in vivo activity assay confirmed that 19c exhibited a radiosensitization effect on orthotopically transplanted GB in mouse brains. Moreover, a pharmacokinetic study in rats showed that 19c was orally available.
Collapse
Affiliation(s)
- Hongquan Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunxi Wen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Bingting Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China;
| | - Xinlin Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yangrong Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jialin Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shi Hou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jiajia Chang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: ; Tel.: +86-010-931634
| |
Collapse
|
4
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
5
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|
6
|
Jeong HJ, Lee SH, Kang HE. Changes in digoxin pharmacokinetics associated with hepatic P-glycoprotein upregulation in rats with non-alcoholic fatty liver disease. Fundam Clin Pharmacol 2021; 35:1100-1108. [PMID: 33914974 DOI: 10.1111/fcp.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND & OBJECTIVES Upregulation of hepatic P-glycoprotein (P-gp) expression has been reported in patients with non-alcoholic fatty liver disease (NAFLD) and rodent models thereof. Here, we explored the changes hepatic P-gp expression and activity in a NAFLD rat model and the effects thereof on the pharmacokinetics of digoxin (a probe substrate of P-gp). METHODS Rats were fed a 1% (w/w) orotic acid-containing diet for 20 days to induce NAFLD; control rats received a normal diet. P-gp expression and biliary digoxin excretion were examined. The pharmacokinetics of digoxin were evaluated after it had been administered intravenously (10 μg·kg-1 ) and orally (200 μg·kg-1 ) to control and NAFLD rats. RESULTS The total areas under the plasma concentration-time curves (AUCs) of digoxin after intravenous and oral administration were significantly smaller (by 39.1% and 73.0%, respectively) in NAFLD rats because of faster biliary digoxin excretion, reflecting elevations of hepatic P-gp expression and activity. Notably, the steady-state volume of distribution rose by 98.2%, while extent of oral bioavailability fell by 55.5% in NAFLD rats. CONCLUSION This is the first study to report digoxin pharmacokinetic changes caused by hepatic P-gp upregulation in NAFLD. Further studies are needed to explore the clinical impact of enhanced P-gp-mediated biliary excretion on pharmacotherapies using P-gp substrates in patients with NAFLD.
Collapse
Affiliation(s)
- Hee Jin Jeong
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Song Hee Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|