1
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Dixit A, Chakraborty A, Nath JR, Chowdhury PK, Kundu B. Ocular protein optineurin shows reversibility from unfolded states and exhibits chaperone-like activity. RSC Adv 2023; 13:6827-6837. [PMID: 36865578 PMCID: PMC9972007 DOI: 10.1039/d2ra07931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Optineurin (OPTN) is a multifunctional, ubiquitously expressed cytoplasmic protein, mutants of which are associated with primary open-angle glaucoma (POAG) and amyotrophic lateral sclerosis (ALS). The most abundant heat shock protein crystallin, known for its remarkable thermodynamic stability and chaperoning activity, allows ocular tissues to withstand stress. The presence of OPTN in ocular tissues is intriguing. Interestingly, OPTN also harbors heat shock elements in its promoter region. Sequence analysis of OPTN exhibits intrinsically disordered regions and nucleic acid binding domains. These properties hinted that OPTN might be endowed with sufficient thermodynamic stability and chaperoning activity. However, these attributes of OPTN have not yet been explored. Here, we studied these properties through thermal and chemical denaturation experiments and monitored the processes using CD, fluorimetry, differential scanning calorimetry, and dynamic light scattering. We found that upon heating, OPTN reversibly forms higher-order multimers. OPTN also displayed a chaperone-like function by reducing the thermal aggregation of bovine carbonic anhydrase. It regains its native secondary structure, RNA-binding property, and melting temperature (T m) after refolding from a thermally as well as chemically denatured state. From our data, we conclude that OPTN, with its unique ability to revert from the stress-mediated unfolded state and its unique chaperoning function, is a valuable protein of the ocular tissues.
Collapse
Affiliation(s)
- Anjali Dixit
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of TechnologyDelhiIndia
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| |
Collapse
|
3
|
Sharma A, Kaushik V, Goel M. Insights into the Distribution and Functional Properties of l-Asparaginase in the Archaeal Domain and Characterization of Picrophilus torridus Asparaginase Belonging to the Novel Family Asp2like1. ACS OMEGA 2022; 7:40750-40765. [PMID: 36406543 PMCID: PMC9670692 DOI: 10.1021/acsomega.2c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed. From the two novel archaeal l-asparaginase families Asp2like1 and Asp2like2, a representative of Asp2like1 family Picrophilus torridus asparaginase (PtAsp2like1) was characterized in detail to find its suitability in therapeutics. PtAsp2like1 was a glutaminase-free asparaginase that showed the optimum activity at 80 °C and pH 10.0. The Km of PtAsp2like1 toward substrate l-asparagine was 11.69 mM. This study demonstrates the improved mapping of asparaginases in the archaeal domain, facilitating future focused research on archaeal asparaginases for therapeutic applications.
Collapse
|
4
|
Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCRJ 2021; 8:514-531. [PMID: 34258001 PMCID: PMC8256714 DOI: 10.1107/s2052252521006011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
l-Asparaginases have remained an intriguing research topic since their discovery ∼120 years ago, especially after their introduction in the 1960s as very efficient antileukemic drugs. In addition to bacterial asparaginases, which are still used to treat childhood leukemia, enzymes of plant and mammalian origin are now also known. They have all been structurally characterized by crystallography, in some cases at outstanding resolution. The structural data have also shed light on the mechanistic details of these deceptively simple enzymes. Yet, despite all this progress, no better therapeutic agents have been found to beat bacterial asparaginases. However, a new option might arise with the discovery of yet another type of asparaginase, those from symbiotic nitrogen-fixing Rhizobia, and with progress in the protein engineering of enzymes with desired properties. This review surveys the field of structural biology of l-asparaginases, focusing on the mechanistic aspects of the well established types and speculating about the potential of the new members of this amazingly diversified family.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
5
|
Uncovering the structure-function aspects of an archaeal CsaA protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140615. [PMID: 33561579 DOI: 10.1016/j.bbapap.2021.140615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
CsaA is known to function as a protein secretion chaperone in bacteria. Homologs of CsaA are also found in archaea while they are absent in eukaryotes. This paper presents the biophysical, biochemical analysis and crystallographic structure determination of CsaA from a thermoacidophilic archaeon Picrophilus torridus (PtCsaA). The PtCsaA appears to prevent the aggregation of heat denatured Bovine Carbonic Anhydrase II (BCAII). Differential denaturation of PtCsaA by guanidine hydrochloride (Gdn-HCl) and urea indicates the stabilization of the protein via salt bridges. Denaturant mediated decrease in 8-Anilinonaphthalene-1-sulfonic acid (ANS) binding and shift in wavelength signifies the partial unfolding of the protein molecule and exposure of hydrophobic patches to solvent on denaturation. The crystal structure of PtCsaA was solved to a resolution of 1.7 Å. The structure of PtCsaA appears to be similar to bacterial CsaA in architecture. Docking of a six amino acid peptide in the substrate binding pocket of PtCsaA suggests conservation in the substrate binding cavity. Residues involved in the formation of the binding cavity and hydrogen bonds responsible for the dimerization of PtCsaA were compared with those observed in the structure of Bacillus subtilis CsaA. The similarities and differences in electrostatic surface potential of the substrate binding cavities in bacterial CsaA and PtCsaA are discussed.
Collapse
|
6
|
Xu Y, Li Y, Li L, Zhang L, Ding Z, Shi G. Reductase-catalyzed tetrahydrobiopterin regeneration alleviates the anti-competitive inhibition of tyrosine hydroxylation by 7,8-dihydrobiopterin. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01958e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Tyrosine hydroxylation by tyrosine hydroxylase is a significant reaction for preparing many nutraceutical and pharmaceutical chemicals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Youran Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Leyun Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
7
|
Sharma P, Tomar R, Yadav SS, Badmalia MD, Nath SK, Ashish, Kundu B. Heat induces end to end repetitive association in P. furiosus L-asparaginase which enables its thermophilic property. Sci Rep 2020; 10:21702. [PMID: 33303914 PMCID: PMC7728782 DOI: 10.1038/s41598-020-78877-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
It remains undeciphered how thermophilic enzymes display enhanced stability at elevated temperatures. Taking l-asparaginase from P. furiosus (PfA) as an example, we combined scattering shapes deduced from small-angle X-ray scattering (SAXS) data at increased temperatures with symmetry mates from crystallographic structures to find that heating caused end-to-end association. The small contact point of self-binding appeared to be enabled by a terminal short β-strand in N-terminal domain, Leu179-Val-Val-Asn182 (LVVN). Interestingly, deletion of this strand led to a defunct enzyme, whereas suplementation of the peptide LVVN to the defunct enzyme restored structural frameworkwith mesophile-type functionality. Crystal structure of the peptide-bound defunct enzyme showed that one peptide ispresent in the same coordinates as in original enzyme, explaining gain-of lost function. A second peptide was seen bound to the protein at a different location suggesting its possible role in substrate-free molecular-association. Overall, we show that the heating induced self-assembly of native shapes of PfA led to an apparent super-stable assembly.
Collapse
Affiliation(s)
- Pankaj Sharma
- CSIR-Institute of Microbial Technology, Sec 39 A, Chandigarh, 160036, India
| | - Rachana Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | - Maulik D Badmalia
- CSIR-Institute of Microbial Technology, Sec 39 A, Chandigarh, 160036, India
| | - Samir Kumar Nath
- CSIR-Institute of Microbial Technology, Sec 39 A, Chandigarh, 160036, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Sec 39 A, Chandigarh, 160036, India.
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
8
|
Singhal N, Sharma A, Kumari S, Garg A, Rai R, Singh N, Kumar M, Goel M. Biophysical and Biochemical Characterization of Nascent Polypeptide-Associated Complex of Picrophilus torridus and Elucidation of Its Interacting Partners. Front Microbiol 2020; 11:915. [PMID: 32528429 PMCID: PMC7264160 DOI: 10.3389/fmicb.2020.00915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Archana Sharma
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Shobha Kumari
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Ruchica Rai
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi, New Delhi, India
- *Correspondence: Manisha Goel,
| |
Collapse
|
9
|
Application of a protein domain as chaperone for enhancing biological activity and stability of other proteins. J Biotechnol 2020; 310:68-79. [DOI: 10.1016/j.jbiotec.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
|
10
|
Kaushik V, Prasad S, Goel M. Biophysical and biochemical characterization of a thermostable archaeal cyclophilin from Methanobrevibacter ruminantium. Int J Biol Macromol 2019; 139:139-152. [DOI: 10.1016/j.ijbiomac.2019.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023]
|
11
|
Jena R, Garg DK, Choudhury L, Saini A, Kundu B. Heterologous expression of an engineered protein domain acts as chaperone and enhances thermotolerance of Escherichia coli. Int J Biol Macromol 2017; 107:2086-2093. [PMID: 29042276 DOI: 10.1016/j.ijbiomac.2017.10.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
Abstract
Heat shock proteins (HSPs) are known to confer protection to the stressed cells by rescuing vital host cell proteins. In the present study we have demonstrated that heterologous expression of N-terminal domain of hyperthermophilic L-asparaginase (NPfA) confers thermotolerance to E. coli. The recombinant expression of NPfA enabled E. coli to demonstrate typical growth behavior at 52°C and survive a thermal shock up to 62°C, both being the highest reported temperatures for growth and heat shock survival. To understand the basis of protection proteome analysis of these cells was carried out which showed that NPfA guards a battery of proteins, especially related to gene regulations and repair, providing definite survival advantage to the stressed cells. Thus NPfA a non-canonical, non-natural chaperone has been shown to render E. coli cells with selective growth advantage under extremes of conditions. We propose that such modified, heat stabilized hosts could be utilized in developing heat-induced expression systems as well for the recombinant expression of thermophilic proteins.
Collapse
Affiliation(s)
- Rajender Jena
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Dushyant K Garg
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Lipsa Choudhury
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110075, India
| | - Akanksha Saini
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Garg DK, Kundu B. Hyperthermophilic l -asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly. Arch Biochem Biophys 2017; 622:36-46. [DOI: 10.1016/j.abb.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
|
13
|
Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochem J 2016; 474:123-147. [DOI: 10.1042/bcj20160737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2–β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity.
Collapse
|
14
|
Pastor A, Singh AK, Shukla PK, Equbal MJ, Malik ST, Singh TP, Chaudhuri TK. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1138-1151. [PMID: 27317979 DOI: 10.1016/j.bbapap.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 01/06/2023]
Abstract
Maltodextrin glucosidase (MalZ) hydrolyses short malto-oligosaccharides from the reducing end releasing glucose and maltose in Escherichia coli. MalZ is a highly aggregation prone protein and molecular chaperonins GroEL and GroES assist in the folding of this protein to a substantial level. The N-terminal region of this enzyme appears to be a unique domain as seen in sequence comparison studies with other amylases as well as through homology modelling. The sequence and homology model analysis show a probability of disorder in the N-Terminal region of MalZ. The crystal structure of this enzyme has been reported in the present communication. Based on the crystallographic structure, it has been interpreted that the N-terminal region of the enzyme (Met1-Phe131) might be unstructured or flexible. To understand the role of the N-terminal region of MalZ in its enzymatic activity, and overall stability, a truncated version (Ala111-His616) of MalZ was created. The truncated version failed to fold into an active enzyme both in E. coli cytosol and in vitro even with the assistance of chaperonins GroEL and GroES. Furthermore, the refolding effort of N-truncated MalZ in the presence of isolated N-terminal domain didn't succeed. Our studies suggest that while the structural rigidity or orientation of the N-terminal region of the MalZ protein may not be essential for its stability and function, but the said domain is likely to play an important role in the formation of the native structure of the protein when present as an integral part of the protein.
Collapse
Affiliation(s)
- Ashutosh Pastor
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amit K Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prakash K Shukla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Md Javed Equbal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shikha T Malik
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
15
|
Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles. PLoS One 2015; 10:e0127011. [PMID: 25996685 PMCID: PMC4440822 DOI: 10.1371/journal.pone.0127011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
Small molecule based therapeutic intervention of amyloids has been limited by their low solubility and poor pharmacokinetic characteristics. We report here, the use of water soluble poly lactic-co-glycolic acid (PLGA)-encapsulated curcumin and emetine nanoparticles (Cm-NPs and Em-NPs, respectively), as potential modulators of gelsolin amyloidogenesis. Using the amyloid-specific dye Thioflavin T (ThT) as an indicator along with electron microscopic imaging we show that the presence of Cm-NPs augmented amyloid formation in gelsolin by skipping the pre-fibrillar assemblies, while Em-NPs induced non-fibrillar aggregates. These two types of aggregates differed in their morphologies, surface hydrophobicity and secondary structural signatures, confirming that they followed distinct pathways. In spite of differences, both these aggregates displayed reduced toxicity against SH-SY5Y human neuroblastoma cells as compared to control gelsolin amyloids. We conclude that the cytotoxicity of gelsolin amyloids can be reduced by either stalling or accelerating its fibrillation process. In addition, Cm-NPs increased the fibrillar bulk while Em-NPs defibrillated the pre-formed gelsolin amyloids. Moreover, amyloid modulation happened at a much lower concentration and at a faster rate by the PLGA encapsulated compounds as compared to their free forms. Thus, besides improving pharmacokinetic and biocompatible properties of curcumin and emetine, PLGA conjugation elevates the therapeutic potential of both small molecules against amyloid fibrillation and toxicity.
Collapse
|
16
|
Garg DK, Tomar R, Dhoke RR, Srivastava A, Kundu B. Domains of Pyrococcus furiosus l-asparaginase fold sequentially and assemble through strong intersubunit associative forces. Extremophiles 2015; 19:681-91. [DOI: 10.1007/s00792-015-0748-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/29/2015] [Indexed: 11/29/2022]
|
17
|
Tomar R, Sharma P, Srivastava A, Bansal S, Ashish, Kundu B. Structural and functional insights into an archaealL-asparaginase obtained through the linker-less assembly of constituent domains. ACTA ACUST UNITED AC 2014; 70:3187-97. [DOI: 10.1107/s1399004714023414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022]
Abstract
Covalent linkers bridging the domains of multidomain proteins are considered to be crucial for assembly and function. In this report, an exception in which the linker of a two-domain dimeric L-asparaginase fromPyrococcus furiosus(PfA) was found to be dispensable is presented. Domains of this enzyme assembled without the linker into a conjoined tetrameric form that exhibited higher activity than the parent enzyme. The global shape and quaternary structure of the conjoined PfA were also similar to the wild-type PfA, as observed by their solution scattering profiles and X-ray crystallographic data. Comparison of the crystal structures of substrate-bound and unbound enzymes revealed an altogether new active-site composition and mechanism of action. Thus, conjoined PfA is presented as a unique enzyme obtained through noncovalent, linker-less assembly of constituent domains that is stable enough to function efficiently at elevated temperatures.
Collapse
|
18
|
Arya P, Srivastava A, Vasaikar SV, Mukherjee G, Mishra P, Kundu B. Selective interception of gelsolin amyloidogenic stretch results in conformationally distinct aggregates with reduced toxicity. ACS Chem Neurosci 2014; 5:982-92. [PMID: 25118567 DOI: 10.1021/cn500002v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of protein misfolding diseases is attributed to the cytotoxicity caused by amyloidogenic prefibrillar aggregates, rather than mature fibrils. The presence of one or more amyloidogenic stretches in different proteins has been proven critical for initiating fibril formation. In the present study, we show that two natural compounds, curcumin and emetine, bind tightly (Kd < 1.6 μM) to the core amyloidogenic stretch (182-192) of gelsolin (AGel). Binding happens in different structural orientations, distinctly modulating the amyloidogenic pathway of AGel. While AGel alone undergoes sigmoidal transition to thioflavin T (ThT)-responsive fibrillar aggregates with clear lag phase, the presence of curcumin or emetine abolishes the lag phase and produces starkly different, noncytotoxic end products. Atomic force microscopy revealed that while curcumin augments fibril formation, emetine arrests it at an intermediate aggregated stage with no fibrillar morphology. FTIR spectroscopy, dynamic light scattering, and ANS fluorescence experiments also suggest that these two species are distinct. Curcumin and emetine also differentially affect the preformed amyloids with the former thickening the fibrils and the latter releasing reclusive oligomers. MD simulations further provided mechanistic insights of differential interaction by the two compounds modulating amyloid formation. The results were also confirmed on the disease-associated amyloidogenic fragment of gelsolin (fAGel). Thus, our findings suggest that targeting amyloidogenic stretches in proteins could be useful in designing novel molecules against protein misfolding diseases.
Collapse
Affiliation(s)
- Prabha Arya
- Department
of Biochemical Engineering and Biotechnology, IIT Delhi, New Delhi 110016, India
| | - Ankit Srivastava
- Kusuma
School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Suhas V. Vasaikar
- Kusuma
School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Goutam Mukherjee
- Supercomputing
Facility for Bioinformatics and Computational Biology, IIT Delhi, New
Delhi 110016, India
| | - Prashant Mishra
- Department
of Biochemical Engineering and Biotechnology, IIT Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma
School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| |
Collapse
|