1
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
2
|
Do HQ, Bassil CM, Andersen EI, Jansen M. Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter. PLoS One 2021; 16:e0253184. [PMID: 34793461 PMCID: PMC8601550 DOI: 10.1371/journal.pone.0253184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2021] [Indexed: 01/19/2023] Open
Abstract
The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Carla M. Bassil
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- The Clark Scholar Program, Texas Tech University, Lubbock, TX, United States of America
| | - Elizabeth I. Andersen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
3
|
Verma K, Kundu D, Kundu LM, Singh AK, Dubey VK. Folding and stability of recombinant azoreductase enzyme from Chromobacterium violaceum. Enzyme Microb Technol 2019; 131:109433. [PMID: 31615666 DOI: 10.1016/j.enzmictec.2019.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Azoreductase from Chromobacterium violaceum was characterized biophysically using experimental and computational tools. The in-silico docking and cross-linking experiments using glutaraldehyde suggest dimeric nature of the enzyme. The enzyme structure was modelled and also studied using circular dichroism (CD) spectroscopy which suggests 40% α- helix, 30% β- sheet and 30% random coils. In the modelled structure of the azoreductase, the cofactor flavin mononucleotide (FMN) binding energy was -3.8 kJ/mol. The binding of FMN affects the azoreductase-cofactor complex stability. The stability-folding studies indicate that the cofactor, FMN is required for folding, stability and activity. Overall, the data provides interesting insight into stability and biophysical parameters of the azoreductase protein.
Collapse
Affiliation(s)
- Kamalesh Verma
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Lal Mohan Kundu
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Chemistry, Institute of Technology Guwahati, Assam 781039, India
| | - Ashish Kumar Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Vikash Kumar Dubey
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
4
|
Aduri NG, Ernst HA, Prabhala BK, Bhatt S, Boesen T, Gajhede M, Mirza O. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state. Biochem Biophys Res Commun 2017; 495:1738-1743. [PMID: 29208467 DOI: 10.1016/j.bbrc.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/01/2017] [Indexed: 01/23/2023]
Abstract
The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer.
Collapse
Affiliation(s)
- Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi A Ernst
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shweta Bhatt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Date SS, Fiori MC, Altenberg GA, Jansen M. Expression in Sf9 insect cells, purification and functional reconstitution of the human proton-coupled folate transporter (PCFT, SLC46A1). PLoS One 2017; 12:e0177572. [PMID: 28493963 PMCID: PMC5426777 DOI: 10.1371/journal.pone.0177572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The proton-coupled folate transporter (PCFT) provides an essential uptake route for the vitamin folic acid (B9) in mammals. In addition, it is currently of high interest for targeting chemotherapeutic agents to tumors due to the increased folic acid requirement of rapidly dividing tumor cells as well as the upregulated PCFT expression in several tumors. To understand its function, determination of its atomic structure and molecular mechanism of transport are essential goals that require large amounts of functional PCFT. Here, we present a high-level heterologous expression system for human PCFT using a recombinant baculovirus and Spodoptera frugiperda (Sf9) insect cells. We demonstrate folate transport functionality along the PCFT expression, isolation, and purification process. Importantly, purified PCFT transports folic acid after reconstitution. We thus succeeded in overcoming heterologous expression as a major bottleneck of PCFT research. The availability of an overexpression system for human PCFT provides the basis for future biochemical, biophysical and structural studies.
Collapse
Affiliation(s)
- Swapneeta S. Date
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- * E-mail:
| |
Collapse
|
6
|
Date SS, Chen CYC, Chen Y, Jansen M. Experimentally optimized threading structures of the proton-coupled folate transporter. FEBS Open Bio 2016; 6:216-30. [PMID: 27047750 PMCID: PMC4794783 DOI: 10.1002/2211-5463.12041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
The proton‐coupled folate transporter (PCFT, SLC46A1) transports folic acid across the plasma membrane, together with an excess of protons such that the net charge translocation is positive. We developed 3D structural models of PCFT threaded onto the X‐ray structures of major facilitator superfamily (MFS) members that were identified as close structural homologues. The model of PCFT threaded onto the glycerol‐3‐phosphate transporter (GlpT) structure is consistent with detailed accessibility studies in the absence of extracellular substrate and at pH 7.4 presented here, and additionally with a multitude of other mutagenesis and functional studies. Characteristic MFS structural features are preserved in this PCFT model, such as 12 transmembrane helices divided into two pseudosymmetric bundles, and a high density of positive charges on the periphery of the cytoplasmic site that allow interactions with negatively charged lipid head‐groups. Under the experimental conditions, PCFT predominantly samples the resting state, which in this case is inward‐open. Several positions lining the substrate cavity have been identified. Motif A, a helix‐turn‐helix motif that is a hallmark of MFS transporters between transmembrane segments II and III is oriented appropriately to interact with residues from transmembrane segments IV as well as XI upon conformational transition to the outward‐open state. A charge‐relay system between three charged residues as well as apposing glycines in two α‐helices, both contributed to by motif A, become engaged when PCFT is modeled on the outward‐open state of a putative proton‐driven transporter (YajR).
Collapse
Affiliation(s)
- Swapneeta S Date
- Department of Cell Physiology and Molecular Biophysics School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Cheng-Yen Charles Chen
- Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Medical Student Summer Research Program School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Yidong Chen
- Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Medical Student Summer Research Program School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| |
Collapse
|
7
|
Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res 2015; 56:1594-605. [PMID: 26116739 DOI: 10.1194/jlr.m059972] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.
Collapse
Affiliation(s)
- Hideo Ogiso
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
8
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
9
|
Seker FB, Yorulmaz H, Kaptan E, Caglayan B, Oztas B. Gestational treatment of folic acid attenuates blood-brain barrier leakage in pregnant- and prepubertal rats after pentylenetetrazole-induced seizure. Nutr Neurosci 2014; 19:55-62. [PMID: 25222769 DOI: 10.1179/1476830514y.0000000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Folic acid (FA) is physiologically important in mammals and is a common vitamin supplement used during pregnancy and lactation. Numerous studies have reported that FA significantly improves endothelial function. The blood-brain barrier (BBB) plays an important role in maintaining the microenvironment required for neuronal function, but its unique structure is damaged by epileptic seizures. The aim of this study was to evaluate the potential protective role of FA on BBB leakage, as well as on the reactive astrogliosis in pregnant rats and their prepubertal offspring during pentylenetetrazole (PTZ)-induced epileptic seizure. METHODS Pregnant rats were treated with FA (5 mg/kg) and PTZ on gestational days 0-19 and 19, respectively. The pups were treated with PTZ at puberty. Evans blue was used to evaluate BBB integrity. Reactive astrogliosis was defined using immunohistochemical analysis for glial fibrillary acidic protein (GFAP). Mean arterial blood pressure (MABP) was measured at the femoral artery. RESULTS A moderate decrease in BBB leakage was observed in FA-treated pregnant and prepubertal animals (P < 0.05). MABP was decreased significantly in pregnant rats (P < 0.05). The epilepsy-induced increase in MABP was less prominent in pregnant animals (P < 0.05). GFAP intensity decreased in PTZ-treated pregnant animals (P < 0.01) and FA-treated prepubertal rats. DISCUSSION Our findings suggest that FA, which is used as a maternal vitamin to promote normal fetus development, may be beneficial against seizure-induced neuronal damage by decreasing BBB leakage and reactive astrogliosis in pregnant and prepubertal rats.
Collapse
|
10
|
Zhao R, Goldman ID. The proton-coupled folate transporter: physiological and pharmacological roles. Curr Opin Pharmacol 2014; 13:875-80. [PMID: 24383099 DOI: 10.1016/j.coph.2013.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states.
Collapse
|
11
|
Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos 2014; 42:632-49. [PMID: 24396145 PMCID: PMC3965896 DOI: 10.1124/dmd.113.055723] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Larry H Matherly
- Department of Oncology (L.H.M., M.R.W., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (L.H.M., Z.H.)
| | | | | |
Collapse
|
12
|
Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. CURRENT TOPICS IN MEMBRANES 2014; 73:175-204. [PMID: 24745983 DOI: 10.1016/b978-0-12-800223-0.00004-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
13
|
Duddempudi PK, Goyal R, Date SS, Jansen M. Delineating the extracellular water-accessible surface of the proton-coupled folate transporter. PLoS One 2013; 8:e78301. [PMID: 24205192 PMCID: PMC3799626 DOI: 10.1371/journal.pone.0078301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity - 14% or less – between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology / threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement.
Collapse
Affiliation(s)
- Phaneendra Kumar Duddempudi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raman Goyal
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Swapneeta Sanjay Date
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|