1
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
2
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Guerra B, Doktor TK, Frederiksen SB, Somyajit K, Andresen BS. Essential role of CK2α for the interaction and stability of replication fork factors during DNA synthesis and activation of the S-phase checkpoint. Cell Mol Life Sci 2022; 79:339. [PMID: 35661926 PMCID: PMC9166893 DOI: 10.1007/s00018-022-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The ataxia telangiectasia mutated and Rad3-related (ATR)-CHK1 pathway is the major signalling cascade activated in response to DNA replication stress. This pathway is associated with the core of the DNA replication machinery comprising CDC45, the replicative MCM2-7 hexamer, GINS (altogether forming the CMG complex), primase-polymerase (POLε, -α, and -δ) complex, and additional fork protection factors such as AND-1, CLASPIN (CLSPN), and TIMELESS/TIPIN. In this study, we report that functional protein kinase CK2α is critical for preserving replisome integrity and for mounting S-phase checkpoint signalling. We find that CDC45, CLSPN and MCM7 are novel CK2α interacting partners and these interactions are particularly important for maintenance of stable MCM7-CDC45, ATRIP-ATR-MCM7, and ATR-CLSPN protein complexes. Consistently, cells depleted of CK2α and treated with hydroxyurea display compromised replisome integrity, reduced chromatin binding of checkpoint mediator CLSPN, attenuated ATR-mediated S-phase checkpoint and delayed recovery of stalled forks. In further support of this, differential gene expression analysis by RNA-sequencing revealed that down-regulation of CK2α accompanies global shutdown of genes that are implicated in the S-phase checkpoint. These findings add to our understanding of the molecular mechanisms involved in DNA replication by showing that the protein kinase CK2α is essential for maintaining the stability of the replisome machinery and for optimizing ATR-CHK1 signalling activation upon replication stress.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sabrina B Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Tewari D, Lloyd-Jones K, Hider RC, Collins H. HPO iron chelator, CP655, causes the G1/S phase cell cycle block via p21 upregulation. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:568-583. [PMID: 32865890 PMCID: PMC7654408 DOI: 10.1002/iid3.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
Iron is known not only for its importance in cellular and metabolic pathways but also for its role in causing cellular toxicities such as production of reactive oxygen species and growth of pathogens. The inability of the human body to physiologically excrete excess iron highlights the need to develop a cheap yet effective iron chelator. This study provides initial evidence of the therapeutic and prophylactic properties of 3-hydroxypyridin-4-one (HPO) chelators in murine collagen-induced arthritis. To determine whether these chelators would be effective on human cells, we tested a panel of different HPO chelators and identified 7-diethylamino-N-((5-hydroxy-6-methyl-4-oxo-1,4-dihydropyridin-3-yl)methyl)-N-methyl-2-oxo-chromen-3-carboxamide (CP655) as the most effective compound targeting human CD4+ T cells. Treatment with CP655 causes significant inhibition of cell proliferation and production of inflammatory cytokines such as interferon-γ and interleukin-17. Microarray analysis revealed dysregulation in cell cycle-related genes following CP655 treatment. This was validated by flow cytometry demonstrating a G1/S phase block caused by CP655. Finally, mechanistic experiments revealed that the chelator may be causing an upregulation of the cell cycle inhibitor protein CDKN1A (p21) as a possible mechanism of action. In conclusion, this study demonstrates that HPO chelators could prove to have therapeutic potential for diseases driven by excessive T cell proliferation.
Collapse
Affiliation(s)
- Damini Tewari
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| | - Katie Lloyd-Jones
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Helen Collins
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| |
Collapse
|
6
|
Implications of CLSPN Variants in Cellular Function and Susceptibility to Cancer. Cancers (Basel) 2020; 12:cancers12092396. [PMID: 32847043 PMCID: PMC7565888 DOI: 10.3390/cancers12092396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
Claspin is a multifunctional protein that participates in physiological processes essential for cell homeostasis that are often defective in cancer, namely due to genetic changes. It is conceivable that Claspin gene (CLSPN) alterations may contribute to cancer development. Therefore, CLSPN germline alterations were characterized in sporadic and familial breast cancer and glioma samples, as well as in six cancer cell lines. Their association to cancer susceptibility and functional impact were investigated. Eight variants were identified (c.-68C>T, c.17G>A, c.1574A>G, c.2230T>C, c.2028+16G>A, c.3595-3597del, and c.3839C>T). CLSPN c.1574A>G (p.Asn525Ser) was significantly associated with breast cancer and was shown to cause partial exon skipping and decreased Claspin expression and Chk1 activation in a minigene splicing assay and in signalling experiments, respectively. CLSPN c.2028+16G>A was significantly associated with familial breast cancer and glioma, whereas c.2230T>C (p.Ser744Pro), was exclusively detected in breast cancer and glioma patients, but not in healthy controls. The remaining variants lacked a significant association with cancer. Nevertheless, the c.-68C>T promoter variant increased transcriptional activity in a luciferase assay. In conclusion, some of the CLSPN variants identified in the present study appear to modulate Claspin’s function by altering CLSPN transcription and RNA processing, as well as Chk1 activation.
Collapse
|
7
|
Onwubiko NO, Borst A, Diaz SA, Passkowski K, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen interactions with ssDNA and replication protein A: a regulatory role of T antigen monomers in lagging strand DNA replication. Nucleic Acids Res 2020; 48:3657-3677. [PMID: 32128579 PMCID: PMC7144908 DOI: 10.1093/nar/gkaa138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10–30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.
Collapse
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Angela Borst
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Suraya A Diaz
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| | - Katharina Passkowski
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University ofWürzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Heinz P Nasheuer
- Biochemistry, School of Natural Sciences, Center for Chromosome Biology, Biomedical SciencesBuilding, NUI Galway, New Castle Road, Galway, Ireland
| |
Collapse
|
8
|
Xu Y, Zhou X, Li Y, Zhang Y, Wang X. Suppression of minichromosome maintenance 7 expression sensitizes chronic lymphocytic leukemia cells to fludarabine. Leuk Lymphoma 2019; 60:1266-1274. [PMID: 30714848 DOI: 10.1080/10428194.2018.1523400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic lymphocytic leukemia (CLL) constitutes the largest percentage of adult leukemia cases in Western countries. Classically, fludarabine (Flu) is an effective drug used as a first-line therapy for CLL; however, Flu resistance limits its clinical effect. Minichromosome maintenance (MCM) complex components 2-7 exert important functions in maintaining genomic stability. Replication stress occurs upon dysregulation of MCM7, which potentiates malignant phenotypes. In this study, primary CLL cells and CLL-derived cell lines displayed elevated MCM7 expression. In CD40-stimulated primary CLL cells, MCM7 inhibition resulted in increased Flu-induced apoptosis and delayed repair of DNA damage. In the MEC-1 and EHEB cell lines, knockdown of MCM7 with lentivirus significantly inhibited cell proliferation and promoted cell cycle arrest at S phase. Moreover, MCM7 silencing sensitized both cell lines to Flu by increasing replication stress. The combination of Flu administration with MCM7 inhibition represents a novel approach to reverse Flu resistance in CLL.
Collapse
Affiliation(s)
- Yangyang Xu
- a Department of Hematology , Shandong Provincial Hospital Affiliated with Shandong University , Jinan , Shandong , China
| | - Xiangxiang Zhou
- a Department of Hematology , Shandong Provincial Hospital Affiliated with Shandong University , Jinan , Shandong , China
| | - Ying Li
- a Department of Hematology , Shandong Provincial Hospital Affiliated with Shandong University , Jinan , Shandong , China
| | - Ya Zhang
- a Department of Hematology , Shandong Provincial Hospital Affiliated with Shandong University , Jinan , Shandong , China
| | - Xin Wang
- a Department of Hematology , Shandong Provincial Hospital Affiliated with Shandong University , Jinan , Shandong , China.,b School of Medicine , Shandong University , Jinan , Shandong , China
| |
Collapse
|
9
|
Azenha D, Lopes MC, Martins TC. Claspin: From replication stress and DNA damage responses to cancer therapy. DNA Repair (Amst) 2019; 115:203-246. [DOI: 10.1016/bs.apcsb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ali R, Ramadurai S, Barry F, Nasheuer HP. Optimizing fluorescent protein expression for quantitative fluorescence microscopy and spectroscopy using herpes simplex thymidine kinase promoter sequences. FEBS Open Bio 2018; 8:1043-1060. [PMID: 29928582 PMCID: PMC5985997 DOI: 10.1002/2211-5463.12432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
The modulation of expression levels of fluorescent fusion proteins (FFPs) is central for recombinant DNA technologies in modern biology as overexpression of proteins contributes to artifacts in biological experiments. In addition, some microscopy techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule-based techniques are very sensitive to high expression levels of FFPs. To reduce the levels of recombinant protein expression in comparison with the commonly used, very strong CMV promoter, the herpes simplex virus thymidine kinase (TK) gene promoter, and mutants thereof were analyzed. Deletion mutants of the TK promoter were constructed and introduced into the Gateway® system for ectopic expression of enhanced green fluorescent protein (eGFP), monomeric cherry (mCherry), and FFPs containing these FPs. Two promoter constructs, TK2ST and TKTSC, were established, which have optimal low expression levels suitable for FCS studies in U2OS, HeLa CCL2, NIH 3T3, and BALB/c cells. Interestingly, when tested in these four cell lines, promoter constructs having a deletion within TK gene 5'-UTR showed significantly higher protein expression levels than the equivalent constructs lacking this deletion. This suggests that a negative regulatory element is localized within the TK gene 5'-UTR.
Collapse
Affiliation(s)
- Rizwan Ali
- Systems Biology IrelandNUI GalwayIreland
- BiochemistrySchool of Natural Sciences and Centre for Chromosome BiologyNational University of Ireland GalwayIreland
- Present address:
Medical Core Facility & Research PlatformsKing Abdullah International Medical Research CenterNational Guard Health AffairsP.O. Box 3660Riyadh11481 Mail Code 1515Saudi Arabia
| | - Sivaramakrishnan Ramadurai
- Systems Biology IrelandNUI GalwayIreland
- BiochemistrySchool of Natural Sciences and Centre for Chromosome BiologyNational University of Ireland GalwayIreland
- Present address:
School of Chemical SciencesDublin City UniversityDublin‐9Ireland
| | - Frank Barry
- Systems Biology IrelandNUI GalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayIreland
| | - Heinz Peter Nasheuer
- Systems Biology IrelandNUI GalwayIreland
- BiochemistrySchool of Natural Sciences and Centre for Chromosome BiologyNational University of Ireland GalwayIreland
| |
Collapse
|
11
|
He X, Zhang C, Shi C, Lu Q. Meta-analysis of mRNA expression profiles to identify differentially expressed genes in lung adenocarcinoma tissue from smokers and non-smokers. Oncol Rep 2018; 39:929-938. [PMID: 29328493 PMCID: PMC5802042 DOI: 10.3892/or.2018.6197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/29/2017] [Indexed: 11/24/2022] Open
Abstract
Compared to other types of lung cancer, lung adenocarcinoma patients with a history of smoking have a poor prognosis during the treatment of lung cancer. How lung adenocarcinoma-related genes are differentially expressed between smoker and non-smoker patients has yet to be fully elucidated. We performed a meta-analysis of four publicly available microarray datasets related to lung adenocarcinoma tissue in patients with a history of smoking using R statistical software. The top 50 differentially expressed genes (DEGs) in smoking vs. non‑smoking patients are shown using heat maps. Additionally, we conducted KEGG and GO analyses. In addition, we performed a PPI network analysis for 8 genes that were selected during a previous analysis. We identified a total of 2,932 DEGs (1,806 upregulated, 1,126 downregulated) and five genes (CDC45, CDC20, ANAPC7, CDC6, ESPL1) that may link lung adenocarcinoma to smoking history. Our study may provide new insights into the complex mechanisms of lung adenocarcinoma in smoking patients, and our novel gene expression signatures will be useful for future clinical studies.
Collapse
Affiliation(s)
- Xiaona He
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cheng Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|