1
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
2
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Neural mechanisms underlying the role of fructose in overfeeding. Neurosci Biobehav Rev 2021; 128:346-357. [PMID: 34182019 DOI: 10.1016/j.neubiorev.2021.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Fructose consumption has been linked with metabolic syndrome and obesity. Fructose-based sweeteners like high fructose corn syrup taste sweeter, improve food palatability, and are increasingly prevalent in our diet. The increase in fructose consumption precedes the rise in obesity and is a contributing driver to the obesity epidemic worldwide. The role of dietary fructose in obesity can be multifactorial by promoting visceral adiposity, hypertension, and insulin resistance. Interestingly, one emergent finding from human and animal studies is that dietary fructose promotes overfeeding. As the brain is a critical regulator of food intake, we reviewed the evidence that fructose can act in the brain and elucidated the major brain systems underlying fructose-induced overfeeding. We found that fructose acts on multiple interdependent brain systems to increase orexigenic drive and the incentive salience of food while decreasing the latency between food bouts and reducing cognitive control to disinhibit feeding. We concluded that the collective actions of fructose may promote feeding behavior by producing a hunger-like state in the brain.
Collapse
|
4
|
Gambaro SE, Zubiría MG, Giordano AP, Portales AE, Alzamendi A, Rumbo M, Giovambattista A. "Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice". Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158700. [PMID: 32201217 DOI: 10.1016/j.bbalip.2020.158700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022]
Abstract
Spexin (SPX) is a novel adipokine related to many metabolic effects, such as gastrointestinal movements, insulin and glucose homeostasis, lipid metabolism and energy balance. This study evaluates the role of SPX in the improvement of the metabolic and inflammatory profile in fructose-rich-diet obese mice. Adult Swiss mice were supplemented or not with fructose (20% in tap water, FRD and CTR, respectively) for 10 weeks. The last ten days, mice were treated or not with SPX (ip. 29 μg/Kg/day, FRD-SPX and CTR-SPX, respectively). A positive correlation was observed between body weight prior to treatment and weight loss after SPX challenge. Moreover, plasma and liver triglycerides and adipose tissue (AT) features (mass, adipocyte hypertrophy, mRNA of leptin) were improved. SPX also induced a reduction in epididymal AT (EAT) expression of TNFα, IL1β and IL6 and an improvement in IL10 and CD206. M1 macrophages in EAT, principally the Ly6C- populations (M1a and M1b), were decreased. Adipocytes from FRD-SPX mice induced less macrophage activation (IL6, mRNA and secretion) than FRD after overnight co-culture with the monocyte cell line (RAW264.7) in stimulated conditions (M1 activation, LPS 100 ng/mL). Finally, in vitro, monocytes pre-incubated with SPX and stimulated with LPS showed decreased inflammatory mRNA markers compared to monocytes with LPS alone. In conclusion, SPX decreased body weight and improved the metabolic profile and adipocyte hypertrophy. Inflammatory Ly6C- macrophages decreased, together with inflammatory marker expression. In vitro studies demonstrate that SPX induced a decrease in M1 macrophage polarization directly or through mature adipocytes.
Collapse
Affiliation(s)
- Sabrina Eliana Gambaro
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - María Guillermina Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - Alejandra Paula Giordano
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Andrea Estefanía Portales
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Ana Alzamendi
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, CONICET-UNLP, La Plata, 1900, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina.
| |
Collapse
|
5
|
Raja Gopal Reddy M, Mahesh M, Manne M, Putcha UK, Jeyakumar SM. Vitamin A and its metabolic pathway play a determinant role in high-fructose-induced triglyceride accumulation of the visceral adipose depot of male Wistar rats. Cell Biochem Funct 2019; 37:578-590. [PMID: 31495961 DOI: 10.1002/cbf.3434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
Here, we tested a hypothesis that vitamin A and/or its metabolic pathways are involved in the high-fructose-mediated alteration in adipose tissue biology. For this purpose, weanling male Wistar rats were provided with one of the following diets: control (C), control with vitamin A deficiency (C-VAD), high fructose (HFr), and HFr with VAD (HFr-VAD) for 16 weeks, except that half of the C-VAD diet-fed rats were shifted to HFr diet (C-VAD(s)HFr), after 8-week period. Compared with control, feeding of HFr diet significantly increased the triglyceride content (P ≤ .01) and thus adipocyte size (hypertrophy) (P ≤ .001) in visceral adipose depot; retroperitoneal white adipose tissue (RPWAT) and these changes were corroborated with de novo lipogenesis, as evidenced by the increased glycerol-3-phosphate dehydrogenase activity (P ≤ .01) and up-regulation of lipogenic pathway transcripts, fructose transporter, and aldehyde dehydrogenase 1 A1. On the contrary, the absence of vitamin A in the HFr diet (HFr-VAD) failed to exert these changes; however, it induced adipocyte hyperplasia. Further, vitamin A deficiency-mediated changes were reversed by replenishment, as evident from the group that was shifted from C-VAD to HFr diet. In conclusion, vitamin A and its metabolic pathway play a key determinant role in the high-fructose-induced triglyceride accumulation and adipocyte hypertrophy of visceral white adipose depot. SIGNIFICANCE OF THE STUDY: Here, we report the metabolic impact of high-fructose feeding under vitamin A-sufficient and vitamin A-deficient conditions. Feeding of high-fructose diet induced triglyceride accumulation and adipocyte hypertrophy of the visceral white adipose depots. These changes corroborated with augmented expression of vitamin A and lipid metabolic pathway genes. Contrarily, absence of vitamin A in the high-fructose diet did not elicit such responses, while vitamin A replenishment reversed the changes exerted by vitamin A deficiency. To our knowledge, this is the first study to report the role of vitamin A and its metabolic pathway in the high-fructose-induced triglyceride synthesis and its accumulation in visceral adipose depot and thus provide a new insight and scope to understand these nutrients interaction in clinical conditions.
Collapse
Affiliation(s)
| | - Malleswarapu Mahesh
- Lipid Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Munikumar Manne
- Biomedical Informatics Centre, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Uday Kumar Putcha
- Pathology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
6
|
M1 macrophage subtypes activation and adipocyte dysfunction worsen during prolonged consumption of a fructose-rich diet. J Nutr Biochem 2018; 61:173-182. [PMID: 30245336 DOI: 10.1016/j.jnutbio.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Abstract
Fructose-rich diet (FRD) has been associated with obesity development, which is characterized by adipocytes hypertrophy and chronic low-grade inflammation. Interaction of adipocytes and immune cells plays a key role in adipose tissue (AT) alterations in obesity. We assessed the metabolic and immune impairments in AT in a murine obesity model induced by FRD at different periods. Adult Swiss mice were divided into groups of 6 and 10 weeks of fructose (FRD 6wk, FRD 10wk) or water intake (CTR 6wk, CTR 10wk). FRD induced increased in body weight, epidydimal AT mass, and plasmatic and liver Tg, and impaired insulin sensitivity. Also, hypertrophic adipocytes from FRD 6wk-10wk mice showed higher IL-6 when stimulated with LPS and leptin secretion. Several of these alterations worsened in FRD 10wk. Regarding AT inflammation, FRD mice have increased TNFα, IL-6 and IL1β, and decrease in IL-10 and CD206 mRNA levels. Using CD11b, LY6C, CD11c and CD206 as macrophages markers, we identified for first time in AT M1 (M1a: Ly6C+/-CD11c+CD206- and M1b: Ly6C+/-CD11c+CD206+) and M2 subtypes (Ly6C+/-CD11c-CD206+). M1a phenotype increased from 6 weeks onward, while Ly6C+/- M1b phenotype increased only after 10 weeks. Finally, co-culture of RAW264.7 (monocytes cell line) and CTR or FRD adipocytes showed that FRD 10wk adipocytes increased IL-6 expression in non- or LPS-stimulated monocytes. Our results showed that AT dysfunction got worse as the period of fructose consumption was longer. Inflammatory macrophage subtypes increased depending on the period of FRD intake, and hypertrophic adipocytes were able to create an environment that favored M1 phenotype in vitro.
Collapse
|
7
|
Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J 2018; 39:2497-2505. [PMID: 29020416 PMCID: PMC6037111 DOI: 10.1093/eurheartj/ehx518] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
Despite strong indications that increased consumption of added sugars correlates with greater risks of developing cardiometabolic syndrome (CMS) and cardiovascular disease (CVD), independent of the caloric intake, the worldwide sugar consumption remains high. In considering the negative health impact of overconsumption of dietary sugars, increased attention is recently being given to the role of the fructose component of high-sugar foods in driving CMS. The primary organs capable of metabolizing fructose include liver, small intestine, and kidneys. In these organs, fructose metabolism is initiated by ketohexokinase (KHK) isoform C of the central fructose-metabolizing enzyme KHK. Emerging data suggest that this tissue restriction of fructose metabolism can be rescinded in oxygen-deprived environments. In this review, we highlight recent progress in understanding how fructose metabolism contributes to the development of major systemic pathologies that cooperatively promote CMS and CVD, reference recent insights into microenvironmental control of fructose metabolism under stress conditions and discuss how this understanding is shaping preventive actions and therapeutic approaches.
Collapse
Affiliation(s)
- Peter Mirtschink
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich, Switzerland
- Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Fetscherstr. 74, Dresden, Germany
| | - Cholsoon Jang
- Department of Medicine, Cardiovascular Institute and Institute Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 11th floor, Civic Blvd, Philadelphia, 19104 PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute and Institute Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 11th floor, Civic Blvd, Philadelphia, 19104 PA, USA
| | - Wilhelm Krek
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
8
|
Effects of fructose consumption on food intake and biochemical and body parameters in Wistar rats. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Efeitos do consumo de frutose sobre ingestão alimentar, parâmetros bioquímicos e corporais em ratos Wistar. Rev Port Cardiol 2017; 36:937-941. [DOI: 10.1016/j.repc.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
|
10
|
Zubiría MG, Gambaro SE, Rey MA, Carasi P, Serradell MDLÁ, Giovambattista A. Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration. Nutrients 2017; 9:nu9050470. [PMID: 28513533 PMCID: PMC5452200 DOI: 10.3390/nu9050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 01/14/2023] Open
Abstract
Modern lifestyle and diets have been associated with metabolic disorders and an imbalance in the normal gut microbiota. Probiotics are widely known for their health beneficial properties targeting the gut microbial ecosystem. The aim of our study was to evaluate the preventive effect of Lactobacillus kefiri (L. kefiri) administration in a fructose-rich diet (FRD) mice model. Mice were provided with tap water or fructose-added (20% w/v) drinking water supplemented or not with L. kefiri. Results showed that probiotic administration prevented weight gain and epidydimal adipose tissue (EAT) expansion, with partial reversion of the adipocyte hypertrophy developed by FRD. Moreover, the probiotic prevented the increase of plasma triglycerides and leptin, together with the liver triglyceride content. Leptin adipocyte secretion was also improved by L. kefiri, being able to respond to an insulin stimulus. Glucose intolerance was partially prevented by L. kefiri treatment (GTT) and local inflammation (TNFα; IL1β; IL6 and INFγ) was completely inhibited in EAT. L. kefiri supplementation generated an impact on gut microbiota composition, changing Bacteroidetes and Firmicutes profiles. Overall, our results indicate that the administration of probiotics prevents the deleterious effects of FRD intake and should therefore be promoted to improve metabolic disorders.
Collapse
Affiliation(s)
- María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Sabrina Eliana Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina.
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina.
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| |
Collapse
|
11
|
Prince PD, Santander YA, Gerez EM, Höcht C, Polizio AH, Mayer MA, Taira CA, Fraga CG, Galleano M, Carranza A. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. J Nutr Biochem 2017; 46:109-116. [PMID: 28499147 DOI: 10.1016/j.jnutbio.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 02/25/2017] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP+ ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions.
Collapse
Affiliation(s)
- Paula D Prince
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Yanina A Santander
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Estefania M Gerez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Ariel H Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Marcos A Mayer
- CONICET, Buenos Aires, Argentina; Fundación CESIM, Santa Rosa, La Pampa, Argentina; Universidad de La Pampa, Facultad de Ciencias Naturales, Santa Rosa, La Pampa, Argentina
| | - Carlos A Taira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Cesar G Fraga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Monica Galleano
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Ramos VW, Batista LO, Cordeiro EM, Oliveira GV, Albuquerque KT. High-monosaccharide intake inhibits anorexigenic hypothalamic insulin response in male rats. Nutr Neurosci 2017; 21:337-340. [PMID: 28276261 DOI: 10.1080/1028415x.2017.1288339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this research is to evaluate if intake of 20% fructose solution is able to change the anorexigenic hypothalamic insulin action. METHODS Thirty day-old male Wistar rats were randomly assigned to one of the following groups: standard chow and water for the rats (Control group, C) and standard chow and 20% fructose solution for the rats (Fructose group, F).These treatments lasted 8 weeks. Three-month-old rats from group C and F received insulin or saline intracerebroventricular injections for evaluation of 24 h food intake, phosphorylated forms of the IR (p-IR) and Akt (p-Akt) proteins and quantified hypothalamic insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) proteins. RESULTS Insulin injection was able to decrease food intake in group C compared to 0.9% saline. However, insulin infusion failed to inhibit 24 h food intake in group F compared to 0.9% saline. The hypothalamic content of the IRS-1 was 37% higher in group F as well as p-Akt protein was significant higher vs. group C. CONCLUSION We concluded that the 20% fructose solution compromised insulin signaling considering that it inhibited the anorexigenic hypothalamic response to acute injection of this hormone and increase of IRS-1 and p-Akt content.
Collapse
Affiliation(s)
- Viviane Wagner Ramos
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,d Macaé Municipal Government , Rio de Janeiro , Brasil
| | - Leandro Oliveira Batista
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,c Laboratório de Nutrição Experimental (LABNEX) , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| | - Elisaldo Mendes Cordeiro
- b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil.,d Macaé Municipal Government , Rio de Janeiro , Brasil
| | - Gustavo Vieira Oliveira
- b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| | - Kelse Tibau Albuquerque
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil.,c Laboratório de Nutrição Experimental (LABNEX) , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| |
Collapse
|
13
|
Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother 2016; 85:658-671. [PMID: 27919735 DOI: 10.1016/j.biopha.2016.11.077] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022] Open
Abstract
Quercetin is a dietary flavonoid compound extracted from various plants, such as apple and onions. Previous studies have revealed its anti-inflammatory, anti-cancer, antioxidant and anti-apoptotic activities. This study investigated the ability of quercetin to inhibit high fructose feeding- or LPS-induced atherosclerosis through regulating oxidative stress, apoptosis and inflammation response in vivo and in vitro experiments. 50 and 100mg/kg quercetin were used in our study, showing significant inhibitory role in high fructose-induced atherosclerosis via reducing reactive oxygen species (ROS) levels, Caspase-3 activation, inflammatory cytokines releasing, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and collagen contents as well as modulating apoptosis- and inflammation-related proteins expression. We also explored the protective effects of quercetin on atherosclerosis by phosphatidylinositide 3-kinases (PI3K)/Protein kinase B (AKT)-associated Bcl-2/Caspase-3 and nuclear factor kappa B (NF-κB) signal pathways activation, promoting AKT and Bcl-2 expression and reducing Caspase-3 and NF-κB activation. Quercetin reduced the atherosclerotic plaque size in vivo in high fructose feeding-induced mice assessed by oil red O. Also, in vitro experiments, quercetin displayed inhibitory role in LPS-induced ROS production, inflammatory response and apoptosis, which were linked with PI3K/AKT-regulated Caspase-3 and NF-κB activation. In conclusion, our results showed that quercetin inhibited atherosclerotic plaque development in high fructose feeding mice via PI3K/AKT activation regulated by ROS.
Collapse
Affiliation(s)
- Xue-Li Lu
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China.
| | - Cui-Hua Zhao
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xin-Liang Yao
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Han Zhang
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| |
Collapse
|
14
|
Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016; 8:198. [PMID: 27049396 PMCID: PMC4848667 DOI: 10.3390/nu8040198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.
Collapse
|
15
|
Alzamendi A, Zubiría G, Moreno G, Portales A, Spinedi E, Giovambattista A. High Risk of Metabolic and Adipose Tissue Dysfunctions in Adult Male Progeny, Due to Prenatal and Adulthood Malnutrition Induced by Fructose Rich Diet. Nutrients 2016; 8:178. [PMID: 27011203 PMCID: PMC4808904 DOI: 10.3390/nu8030178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this work was to determine the effect of a fructose rich diet (FRD) consumed by the pregnant mother on the endocrine-metabolic and in vivo and in vitro adipose tissue (AT) functions of the male offspring in adulthood. At 60 days of age, rats born to FRD-fed mothers (F) showed impaired glucose tolerance after glucose overload and high circulating levels of leptin (LEP). Despite the diminished mass of retroperitoneal AT, this tissue was characterized by enhanced LEP gene expression, and hypertrophic adipocytes secreting in vitro larger amounts of LEP. Analyses of stromal vascular fraction composition by flow cytometry revealed a reduced number of adipocyte precursor cells. Additionally, 60 day-old control (C) and F male rats were subjected to control diet (CC and FC animals) or FRD (CF and FF rats) for three weeks. FF animals were heavier and consumed more calories. Their metabolic-endocrine parameters were aggravated; they developed severe hyperglycemia, hypertriglyceridemia, hyperleptinemia and augmented AT mass with hypertrophic adipocytes. Our study highlights that manipulation of maternal diet induced an offspring phenotype mainly imprinted with a severely unhealthy adipogenic process with undesirable endocrine-metabolic consequences, putting them at high risk for developing a diabetic state.
Collapse
Affiliation(s)
- Ana Alzamendi
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Guillermina Zubiría
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Griselda Moreno
- IIFP (CONICET La Plata) School of Exact Sciences, National University of La Plata (UNLP), La Plata1900, Argentina.
| | - Andrea Portales
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Eduardo Spinedi
- CENEXA (CONICET La Plata-UNLP, a PAHO/WHO (Collaborating Centre for Diabetes)), School of Medicine, National University of La Plata (UNLP), La Plata1900, Argentina.
| | - Andrés Giovambattista
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| |
Collapse
|
16
|
Liu SH, Cai FY, Chiang MT. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance. Mar Drugs 2015; 13:7302-13. [PMID: 26690452 PMCID: PMC4699240 DOI: 10.3390/md13127067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF) diet (63.1%). Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1) normal group (normal); (2) HF group; (3) chitosan + HF group (HF + C). The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 10⁵ Dalton and degree of deacetylation was about 89.8%) significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC) and triglyceride (TG) contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), the TC/high-density lipoprotein cholesterol (HDL-C) ratio, and increased the HDL-C/(LDL-C + VLDL-C) ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment of glucose and lipid metabolism in a HF-diet-fed rat model.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 104, Taiwan.
| | - Fang-Ying Cai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|