1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
3
|
Niarakis A, Giannopoulou E, Syggelos SA, Panagiotopoulos E. Effects of proteasome inhibitors on cytokines, metalloproteinases and their inhibitors and collagen type-I expression in periprosthetic tissues and fibroblasts from loose arthroplasty endoprostheses. Connect Tissue Res 2019; 60:555-570. [PMID: 30931650 DOI: 10.1080/03008207.2019.1601186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function. Proteasome inhibitors have been reported to alter the secretory profile of cells involved in inflammation and also to induce ROS production. In this work, we aimed to document the effects of proteasome inhibitors MG-132 and Epoxomicin, on the production of factors involved in aseptic loosening, in periprosthetic tissues and fibroblasts, and investigate the role of proteasome impairment in periprosthetic osteolysis. Materials and methods: IL-6 levels in tissue cultures were determined by sandwich ELISA. MMP-1, -3, -13, -14 and TIMP-1 levels in tissue or cell cultures were determined by indirect ELISA. Results for MMP-1 and TIMP-1 in tissue cultures were confirmed by Western blotting. MMP-2 and MMP-9 levels were determined by gelatin zymography. Gene expression of IL-6, MMP-1,-3,-14, TIMP-1 and collagen type-I was determined by RT-PCR. Results: Results show that proteasome inhibition induces the expression of ΜΜΡ-1, -2, -3, -9 and suppresses that of IL-6, MMP-14, -13, TIMP-1 and collagen type I, enhancing the collagenolytic and gelatinolytic activity already present in periprosthetic tissues, as documented in various studies. Conclusions: These findings suggest that proteasome impairment could be a contributing factor to aseptic loosening. Protection and enhancement of proteasome efficacy could thus be considered as an alternative strategy toward disease treatment.
Collapse
Affiliation(s)
- Anna Niarakis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece.,GenHotel EA3886, Univ Evry, Université Paris-Saclay , Evry , France
| | | | - Spyros A Syggelos
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras , Greece
| | - Elias Panagiotopoulos
- Department of Orthopaedics, School of Medicine, University of Patras , Patras , Greece
| |
Collapse
|
4
|
Aletras AJ, Trilivas I, Christopoulou ME, Drakouli S, Georgakopoulos CD, Pharmakakis N. UVB-mediated down-regulation of proteasome in cultured human primary pterygium fibroblasts. BMC Ophthalmol 2018; 18:328. [PMID: 30563490 PMCID: PMC6299496 DOI: 10.1186/s12886-018-0987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
Background Pterygium is a condition characterized by epithelial overgrowth of the cornea, inflammatory cell infiltration and an abnormal extracellular matrix accumulation. Chronic UV exposure is considered as a pathogenic factor of this disease. Proteasome is an intracellular multi-subunit protease complex that degrades intracellular proteins. Among proteasome subunits the β5 (PSMB5), bearing chymotrypsin-like activity. It is considered as the main proteasome subunit and its expression is mediated by Nrf2-ARE pathway in many cell types. This study investigates the expression of PSMB5 in pterygium and the effect of UVB irradiation on its expression and activity in pterygium fibroblasts. Methods Normal conjunctival and pterygium specimens were obtained from the bulbar conjunctiva of patients undergoing cataract surgery and from patients with pterygium undergoing surgical removal of primary tissue, respectively. Fibroblasts were isolated upon treatment of specimens with clostridium collagenase. The expression of PSMB5 and Nrf2 in tissues and cells was ascertained by RT-PCR analysis and western blotting. Cell survival was measured by the MTT method and the proteasome chymotrypsin-like activity was determined by fluorometry. Results RT-PCR analysis showed that the expression of PSMB5 was significantly lower in pterygium than in normal conjunctiva. The expression of PSMB5 was mediated by the Nrf2/ARE pathway as indicated by using the Nrf2 activator Oltipraz. The expression of PSMB5 and Nrf2 by pterygium fibroblasts was suppressed in a dose dependent manner following UVB radiation of 0–50 mJ/cm2 doses. The expression of PSMB5, but not of Nrf2, remained at almost the control levels, when UVB exposure was performed after pre-incubation of cells with the src kinases inhibitor PP2. UVB irradiation had very low deleterious effect on fibroblasts survival, while it did not affect the proteasome chymotrypsin-like activity. Conclusion In pterygium fibroblasts, UVB exposure leads to down-regulation of Nrf2/ARE-mediated PSMB5 gene expression, in which src kinases may be implicated. This effect may be partially responsible for the lower expression of PSMB5 detected in pterygium as compared to normal conjunctiva.
Collapse
Affiliation(s)
- Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26 504, Patras, Greece.
| | - Ioannis Trilivas
- Department of Opthalmology, Medical School, University of Patras, Patras, Greece
| | | | - Sotiria Drakouli
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26 504, Patras, Greece.,Present address: Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Volos, Greece
| | | | - Nikolaos Pharmakakis
- Department of Opthalmology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Matrix Metalloproteinases in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Li C, Kuemmerle JF. Genetic and epigenetic regulation of intestinal fibrosis. United European Gastroenterol J 2016; 4:496-505. [PMID: 27536359 DOI: 10.1177/2050640616659023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Crohn's disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn's disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn's disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn's disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn's disease and contrast that with other fibrotic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| | - John F Kuemmerle
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA; Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
7
|
Alexander K, Banos A, Abro S, Hoppensteadt D, Fareed J, Rees H, Hopkinson W. Levels of Matrix Metalloproteinases in Arthroplasty Patients and Their Correlation With Inflammatory and Thrombotic Activation Processes. Clin Appl Thromb Hemost 2016; 22:441-6. [DOI: 10.1177/1076029616639704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An imbalance of matrix metalloproteinases (MMPs) and their inhibitors is thought to play a major role in the pathophysiology of joint diseases. The aim of this study is to provide additional insights into the relevance of MMP levels in arthroplasty patients in relation to inflammation and thrombosis. Deidentified plasma samples from 100 patients undergoing total hip arthroplasty or total knee arthroplasty were collected preoperatively, on postoperative day 1, and on postoperative day 3. Tissue inhibitor of MMP 4, tumor necrosis factor α (TNF-α), pro-MMP1, MMP3, MMP9, MMP13, and d-dimer were measured using enzyme-linked immunosorbent assay kits. A biochip array was used to profile interleukin (IL) 2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma, TNF-α, IL-1α, IL-1β, monocyte chemoattractant protein 1, and endothelial growth factor (EGF) levels. The levels of MMP1, MMP9, MMP13, and TNF-α were elevated preoperatively in arthroplasty patients when compared to healthy individuals. The concentrations of MMP1 and MMP9 increased slightly in postsurgical samples. d-Dimer levels were elevated preoperatively, increased postoperatively, and started decreasing on postoperative day 3. Significant correlations between MMP9 with TNF-α, IL-6, IL-8, VEGF, and EGF were identified. Elevated preoperative MMP1, MMP9, and MMP13 concentrations suggest that they may play a role in the pathogenesis of arthritis. There is also evidence of increased coagulation activity and possible upregulation of several MMPs postsurgically. Correlation analysis indicates that MMP9 levels may potentially be related to inflammation and thrombosis in arthroplasty patients.
Collapse
Affiliation(s)
- Kyle Alexander
- Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Andrew Banos
- Department of Orthopedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, IL, USA
| | - Schuharazad Abro
- Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Harold Rees
- Department of Orthopedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, IL, USA
| | - William Hopkinson
- Department of Orthopedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
8
|
Truong A, Yip C, Paye A, Blacher S, Munaut C, Deroanne C, Noel A, Sounni NE. Dynamics of internalization and recycling of the prometastatic membrane type 4 matrix metalloproteinase (MT4-MMP) in breast cancer cells. FEBS J 2016; 283:704-22. [DOI: 10.1111/febs.13625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Alice Truong
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Alexandra Paye
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology; GIGA-Cancer; University of Liège; Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| |
Collapse
|
9
|
Costa GNO, Dudbridge F, Fiaccone RL, da Silva TM, Conceição JS, Strina A, Figueiredo CA, Magalhães WCS, Rodrigues MR, Gouveia MH, Kehdy FSG, Horimoto ARVR, Horta B, Burchard EG, Pino-Yanes M, Del Rio Navarro B, Romieu I, Hancock DB, London S, Lima-Costa MF, Pereira AC, Tarazona E, Rodrigues LC, Barreto ML. A genome-wide association study of asthma symptoms in Latin American children. BMC Genet 2015; 16:141. [PMID: 26635092 PMCID: PMC4669662 DOI: 10.1186/s12863-015-0296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 01/14/2023] Open
Abstract
Background Asthma is a chronic disease of the airways and, despite the advances in the knowledge of associated genetic regions in recent years, their mechanisms have yet to be explored. Several genome-wide association studies have been carried out in recent years, but none of these have involved Latin American populations with a high level of miscegenation, as is seen in the Brazilian population. Methods 1246 children were recruited from a longitudinal cohort study in Salvador, Brazil. Asthma symptoms were identified in accordance with an International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. Following quality control, 1 877 526 autosomal SNPs were tested for association with childhood asthma symptoms by logistic regression using an additive genetic model. We complemented the analysis with an estimate of the phenotypic variance explained by common genetic variants. Replications were investigated in independent Mexican and US Latino samples. Results Two chromosomal regions reached genome-wide significance level for childhood asthma symptoms: the 14q11 region flanking the DAD1 and OXA1L genes (rs1999071, MAF 0.32, OR 1.78, 95 % CI 1.45–2.18, p-value 2.83 × 10−8) and 15q22 region flanking the FOXB1 gene (rs10519031, MAF 0.04, OR 3.0, 95 % CI 2.02–4.49, p-value 6.68 × 10−8 and rs8029377, MAF 0.03, OR 2.49, 95 % CI 1.76–3.53, p-value 2.45 × 10−7). eQTL analysis suggests that rs1999071 regulates the expression of OXA1L gene. However, the original findings were not replicated in the Mexican or US Latino samples. Conclusions We conclude that the 14q11 and 15q22 regions may be associated with asthma symptoms in childhood. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0296-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo N O Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil.
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | | | - Thiago M da Silva
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil.
| | | | - Agostino Strina
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil.
| | - Camila A Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.
| | - Wagner C S Magalhães
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Maira R Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mateus H Gouveia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Fernanda S G Kehdy
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | - Bernardo Horta
- Programa de Pós Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, Brazil.
| | | | - Maria Pino-Yanes
- Department of Medicine, University of California, San Francisco, USA.
| | - Blanca Del Rio Navarro
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | - Dana B Hancock
- Behavioral and Urban Health Program, Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina, USA.
| | - Stephanie London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | - Alexandre C Pereira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
| | - Eduardo Tarazona
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Laura C Rodrigues
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil. .,Centro de Pesquisa Gonçalo Muniz, Fundação Osvaldo Cruz, Salvador, Brazil.
| |
Collapse
|