1
|
Orthwein T, Alford JT, Becker NS, Fink P, Forchhammer K. Structural elements of cyanobacterial co-factor-independent phosphoglycerate mutase that mediate regulation by PirC. mBio 2025; 16:e0337824. [PMID: 40178271 PMCID: PMC12077085 DOI: 10.1128/mbio.03378-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been identified as a regulating key point in the carbon storage metabolism of cyanobacteria. Upon nitrogen starvation, the iPGAM is inhibited by the PII-interacting regulator PirC, which is released from its interaction partner PII due to elevated 2-oxoglutarate levels. In silico analysis of 338 different iPGAMs revealed a deep-rooted distinctive evolution of iPGAMs in cyanobacteria. Remarkably, cyanobacterial iPGAMs possess a unique loop structure and an extended C-terminus. Our mass photometry analysis suggests that iPGAM forms a complex with three individual PirC monomers. Biolayer interferometry revealed that the PirC-iPGAM complex is affected by the unique loop and the C-terminal structural elements of iPGAM. A C-terminally truncated iPGAM enzyme showed loss of control by PirC and twofold increased enzymatic activity compared to the iPGAM-WT (wild type), as demonstrated by enzyme assays. By contrast, deleting the loop structure significantly reduced the activity of this variant. Physiological experiments were carried out with different iPGAM variant strains of Synechocystis, in which these structural elements were deleted. The strain expressing the C-terminally truncated iPGAM showed a similar overproduction of polyhydroxybutyrate as deletion of the iPGAM regulator PirC. However, in contrast to the latter, these strains showed higher overall biomass accumulation, making them a better chassis for the production of polyhydroxybutyrate or other valuable substances than the PirC-deficient mutant.IMPORTANCEThe primordial cyanobacteria were responsible for developing oxygenic photosynthesis early in evolution. In the pathways of fixed carbon allocation, the co-factor-independent phosphoglycerate mutase (iPGAM) plays a crucial role by directing the first CO2 fixation product, 3-phosphoglycerate, toward central anabolic glycolytic-derived pathways. This work reveals a distinct evolution of iPGAM within oxygenic photosynthetic organisms. We have identified two specific segments in cyanobacterial iPGAMs that affect the control of iPGAM activity through its specific interactor protein PirC. This understanding of iPGAM has allowed us to engineer cyanobacterial strains with altered carbon fluxes. Since cyanobacteria can directly convert CO2 into valuable products, our results demonstrate a novel approach for developing a chassis for biotechnical use.
Collapse
Affiliation(s)
- Tim Orthwein
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Janette T. Alford
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Nathalie Sofie Becker
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Phillipp Fink
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Hoshino S, Onaka H, Abe I. Recent advances in the biosynthetic studies of bacterial organoarsenic natural products. Nat Prod Rep 2025; 42:663-671. [PMID: 39192828 DOI: 10.1039/d4np00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Zheng K, Martinez MDP, Bouzid M, Balparda M, Schwarzländer M, Maurino VG. Regulation of plant glycolysis and the tricarboxylic acid cycle by posttranslational modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70142. [PMID: 40185637 PMCID: PMC11971034 DOI: 10.1111/tpj.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Plant glycolysis and the tricarboxylic acid (TCA) cycle are key pathways of central carbon metabolism. They facilitate energy transformation, provide redox balance, and supply the building blocks for biosynthetic processes that underpin plant survival, growth, and productivity. Yet, rather than acting as static pathways, the fluxes that are mediated by the enzymes involved form a branched network. Flux modes can change flexibly to match cellular demands and environmental fluctuations. Several of the enzymes involved in glycolysis and the TCA cycle have been identified as targets of posttranslational modifications (PTMs). PTMs can act as regulators to facilitate changes in flux by rapidly and reversibly altering enzyme organization and function. Consequently, PTMs enable plants to rapidly adjust their metabolic flux landscape, match energy and precursor provision with the changeable needs, and enhance overall metabolic flexibility. Here, we review the impact of different PTMs on glycolytic and TCA cycle enzymes, focusing on modifications that induce functional changes rather than the mere occurrence of PTMs at specific sites. By synthesizing recent findings, we provide a foundation for a system-level understanding of how PTMs choreograph the remarkable flexibility of plant central carbon metabolism.
Collapse
Affiliation(s)
- Ke Zheng
- Plant Energy Biology LabInstitute of Plant Biology and Biotechnology (IBBP), University of MünsterSchlossplatz 8Münster48145Germany
| | - Maria del Pilar Martinez
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Maroua Bouzid
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Manuel Balparda
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Markus Schwarzländer
- Plant Energy Biology LabInstitute of Plant Biology and Biotechnology (IBBP), University of MünsterSchlossplatz 8Münster48145Germany
| | - Veronica G. Maurino
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| |
Collapse
|
4
|
Hoshino S, Ijichi S, Asamizu S, Onaka H. Insights into Arsenic Secondary Metabolism in Actinomycetes from the Structure and Biosynthesis of Bisenarsan. J Am Chem Soc 2023; 145:17863-17871. [PMID: 37534495 DOI: 10.1021/jacs.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to Streptomyces lividans 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by S-adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shumpei Asamizu
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
van Neer RHP, Dranchak PK, Liu L, Aitha M, Queme B, Kimura H, Katoh T, Battaile KP, Lovell S, Inglese J, Suga H. Serum-Stable and Selective Backbone-N-Methylated Cyclic Peptides That Inhibit Prokaryotic Glycolytic Mutases. ACS Chem Biol 2022; 17:2284-2295. [PMID: 35904259 PMCID: PMC9900472 DOI: 10.1021/acschembio.2c00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methylated amino acids (N-MeAAs) are privileged residues of naturally occurring peptides critical to bioactivity. However, de novo discovery from ribosome display is limited by poor incorporation of N-methylated amino acids into the nascent peptide chain attributed to a poor EF-Tu affinity for the N-methyl-aminoacyl-tRNA. By reconfiguring the tRNA's T-stem region to compensate and tune the EF-Tu affinity, we conducted Random nonstandard Peptides Integrated Discovery (RaPID) display of a macrocyclic peptide (MCP) library containing six different N-MeAAs. We have here devised a "pool-and-split" enrichment strategy using the RaPID display and identified N-methylated MCPs against three species of prokaryotic metal-ion-dependent phosphoglycerate mutases. The enriched MCPs reached 57% N-methylation with up to three consecutively incorporated N-MeAAs, rivaling natural products. Potent nanomolar inhibitors ranging in ortholog selectivity, strongly mediated by N-methylation, were identified. Co-crystal structures reveal an architecturally related Ce-2 Ipglycermide active-site metal-ion-coordinating Cys lariat MCP, functionally dependent on two cis N-MeAAs with broadened iPGM species selectivity over the original nematode-selective MCPs. Furthermore, the isolation of a novel metal-ion-independent Staphylococcus aureus iPGM inhibitor utilizing a phosphoglycerate mimetic mechanism illustrates the diversity of possible chemotypes encoded by the N-MeAA MCP library.
Collapse
Affiliation(s)
- R H P van Neer
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - P K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - L Liu
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - M Aitha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - B Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - H Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K P Battaile
- New York Structural Biology Center, NSLS-II, Upton, New York 11973, United States
| | - S Lovell
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - H Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Duminil P, Davanture M, Oury C, Boex-Fontvieille E, Tcherkez G, Zivy M, Hodges M, Glab N. Arabidopsis thaliana 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1478-1489. [PMID: 34174129 DOI: 10.1111/tpj.15395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.
Collapse
Affiliation(s)
- Pauline Duminil
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAe, CNRS, Université Evry, Université Paris-Saclay, Bat 630, Gif sur Yvette, 91190, France
| | - Marlène Davanture
- INRAE, CNRS, AgroParisTech, Université Paris-Saclay, PAPPSO, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Céline Oury
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAe, CNRS, Université Evry, Université Paris-Saclay, Bat 630, Gif sur Yvette, 91190, France
| | - Edouard Boex-Fontvieille
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAe, CNRS, Université Evry, Université Paris-Saclay, Bat 630, Gif sur Yvette, 91190, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, Beaucouzé, 49070, France
| | - Michel Zivy
- INRAE, CNRS, AgroParisTech, Université Paris-Saclay, PAPPSO, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAe, CNRS, Université Evry, Université Paris-Saclay, Bat 630, Gif sur Yvette, 91190, France
| | - Nathalie Glab
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAe, CNRS, Université Evry, Université Paris-Saclay, Bat 630, Gif sur Yvette, 91190, France
| |
Collapse
|
7
|
Wiedmann M, Dranchak PK, Aitha M, Queme B, Collmus CD, Kashipathy MM, Kanter L, Lamy L, Rogers JM, Tao D, Battaile KP, Rai G, Lovell S, Suga H, Inglese J. Structure-activity relationship of ipglycermide binding to phosphoglycerate mutases. J Biol Chem 2021; 296:100628. [PMID: 33812994 PMCID: PMC8113725 DOI: 10.1016/j.jbc.2021.100628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
Catalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure–activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase–phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex.
Collapse
Affiliation(s)
- Mareike Wiedmann
- Department of Chemistry, Graduate School of Sciences, The University of Tokyo, Tokyo, Japan
| | - Patricia K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Mahesh Aitha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Bryan Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Christopher D Collmus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Maithri M Kashipathy
- Protein Structure Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas, USA
| | - Liza Kanter
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Laurence Lamy
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Joseph M Rogers
- Department of Chemistry, Graduate School of Sciences, The University of Tokyo, Tokyo, Japan
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kevin P Battaile
- IMCA-CAT Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Scott Lovell
- Protein Structure Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Sciences, The University of Tokyo, Tokyo, Japan.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Li R, Lan Y, Chen C, Cao Y, Huang Q, Ho CT, Lu M. Anti-obesity effects of capsaicin and the underlying mechanisms: a review. Food Funct 2020; 11:7356-7370. [PMID: 32820787 DOI: 10.1039/d0fo01467b] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Obesity and overweight have become serious health problems in the world and are linked to a variety of metabolic disorders. Phytochemicals with a weight-loss effect have been widely studied for the past few decades. Capsaicin is the major bioactive component in red chili peppers with many beneficial functions. Its anti-obesity effects have been evaluated extensively using different model systems, including cell models, animal models and human subjects. In this paper, anti-obesity effects of capsaicin are reviewed and the underlying mechanisms are characterized.
Collapse
Affiliation(s)
- Run Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Sun L, Vella P, Schnell R, Polyakova A, Bourenkov G, Li F, Cimdins A, Schneider TR, Lindqvist Y, Galperin MY, Schneider G, Römling U. Structural and Functional Characterization of the BcsG Subunit of the Cellulose Synthase in Salmonella typhimurium. J Mol Biol 2018; 430:3170-3189. [PMID: 30017920 DOI: 10.1016/j.jmb.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
Many bacteria secrete cellulose, which forms the structural basis for bacterial multicellular aggregates, termed biofilms. The cellulose synthase complex of Salmonella typhimurium consists of the catalytic subunits BcsA and BcsB and several auxiliary subunits that are encoded by two divergently transcribed operons, bcsRQABZC and bcsEFG. Expression of the bcsEFG operon is required for full-scale cellulose production, but the functions of its products are not fully understood. This work aimed to characterize the BcsG subunit of the cellulose synthase, which consists of an N-terminal transmembrane fragment and a C-terminal domain in the periplasm. Deletion of the bcsG gene substantially decreased the total amount of BcsA and cellulose production. BcsA levels were partially restored by the expression of the transmembrane segment, whereas restoration of cellulose production required the presence of the C-terminal periplasmic domain and its characteristic metal-binding residues. The high-resolution crystal structure of the periplasmic domain characterized BcsG as a member of the alkaline phosphatase/sulfatase superfamily of metalloenzymes, containing a conserved Zn2+-binding site. Sequence and structural comparisons showed that BcsG belongs to a specific family within alkaline phosphatase-like enzymes, which includes bacterial Zn2+-dependent lipopolysaccharide phosphoethanolamine transferases such as MCR-1 (colistin resistance protein), EptA, and EptC and the Mn2+-dependent lipoteichoic acid synthase (phosphoglycerol transferase) LtaS. These enzymes use the phospholipids phosphatidylethanolamine and phosphatidylglycerol, respectively, as substrates. These data are consistent with the recently discovered phosphoethanolamine modification of cellulose by BcsG and show that its membrane-bound and periplasmic parts play distinct roles in the assembly of the functional cellulose synthase and cellulose production.
Collapse
Affiliation(s)
- Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Peter Vella
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Polyakova
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
Yu H, Dranchak P, Li Z, MacArthur R, Munson MS, Mehzabeen N, Baird NJ, Battalie KP, Ross D, Lovell S, Carlow CKS, Suga H, Inglese J. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases. Nat Commun 2017; 8:14932. [PMID: 28368002 PMCID: PMC5382265 DOI: 10.1038/ncomms14932] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemistry, Graduate School of Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, USA
| | - Zhiru Li
- Division of Genome Biology, New England Biolabs, Ipswich, Massachusetts 01938, USA
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, USA
| | - Matthew S. Munson
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Nurjahan Mehzabeen
- Proton Structure Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Nathan J. Baird
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin P. Battalie
- IMCA-CAT Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Scott Lovell
- Proton Structure Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, USA
| |
Collapse
|