1
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
2
|
Kurushima J, Campo N, van Raaphorst R, Cerckel G, Polard P, Veening JW. Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events. eLife 2020; 9:e58771. [PMID: 32965219 PMCID: PMC7567608 DOI: 10.7554/elife.58771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
The spread of antimicrobial resistance and vaccine escape in the human pathogen Streptococcus pneumoniae can be largely attributed to competence-induced transformation. Here, we studied this process at the single-cell level. We show that within isogenic populations, all cells become naturally competent and bind exogenous DNA. We find that transformation is highly efficient and that the chromosomal location of the integration site or whether the transformed gene is encoded on the leading or lagging strand has limited influence on recombination efficiency. Indeed, we have observed multiple recombination events in single recipients in real-time. However, because of saturation and because a single-stranded donor DNA replaces the original allele, transformation efficiency has an upper threshold of approximately 50% of the population. The fixed mechanism of transformation results in a fail-safe strategy for the population as half of the population generally keeps an intact copy of the original genome.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Guillaume Cerckel
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| |
Collapse
|
3
|
Paissoni C, Jussupow A, Camilloni C. Martini bead form factors for nucleic acids and their application in the refinement of protein–nucleic acid complexes against SAXS data. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719002450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of small-angle X-ray scattering (SAXS) in combination with molecular dynamics simulation is hampered by its heavy computational cost. The calculation of SAXS from atomic structures can be speeded up by using a coarse-grain representation of the structure. Following the work of Niebling, Björling & Westenhoff [J. Appl. Cryst. (2014), 47, 1190–1198], the Martini bead form factors for nucleic acids have been derived and then implemented, together with those previously determined for proteins, in the publicly available PLUMED library. A hybrid multi-resolution strategy has also been implemented to perform SAXS restrained simulations at atomic resolution by calculating the virtual positions of the Martini beads on the fly and using them for the calculation of SAXS. The accuracy and efficiency of the method are demonstrated by refining the structure of two protein–nucleic acid complexes. Instrumental for this result is the use of metainference, which allows the consideration and alleviation of the approximations at play in the present SAXS calculations.
Collapse
|
4
|
Production of membrane proteins for characterisation of their pheromone-sensing and antimicrobial resistance functions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:723-737. [PMID: 30066130 PMCID: PMC6182600 DOI: 10.1007/s00249-018-1325-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022]
Abstract
Despite the importance of membrane proteins in cellular processes, studies of these hydrophobic proteins present major technical challenges, including expression and purification for structural and biophysical studies. A modified strategy of that proposed previously by Saidijam et al. (2005) and others, for the routine expression of bacterial membrane proteins involved in environmental sensing and antimicrobial resistance (AMR), is proposed which results in purification of sufficient proteins for biophysical experiments. We report expression successes amongst a collection of enterococcal vancomycin resistance membrane proteins: VanTG, VanTG-M transporter domain, VanZ and the previously characterised VanS (A-type) histidine protein kinase (HPK). Using the same strategy, we report on the successful amplification and purification of intact BlpH and ComD2 HPKs of Streptococcus pneumoniae. Near-UV circular dichroism revealed both recombinant proteins bound their pheromone ligands BlpC and CSP2. Interestingly, CSP1 also interacted with ComD. Finally, we evaluate the alternative strategy for studying sensory HPKs involving isolated soluble sensory domain fragments, exemplified by successful production of VicKESD of Enterococcus faecalis VicK. Purified VicKESD possessed secondary structure post-purification. Thermal denaturation experiments using far-UV CD, a technique which can be revealing regarding ligand binding, revealed that: (a) VicKESD denaturation occurs between 15 and 50 °C; and (b) reducing conditions did not detectably affect denaturation profiles suggesting reducing conditions per se are not directly sensed by VicKESD. Our findings provide information on a modified strategy for the successful expression, production and/or storage of bacterial membrane HPKs, AMR proteins and sensory domains for their future crystallisation, and ligand binding studies.
Collapse
|
5
|
Weyder M, Prudhomme M, Bergé M, Polard P, Fichant G. Dynamic Modeling of Streptococcus pneumoniae Competence Provides Regulatory Mechanistic Insights Into Its Tight Temporal Regulation. Front Microbiol 2018; 9:1637. [PMID: 30087661 PMCID: PMC6066662 DOI: 10.3389/fmicb.2018.01637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
In the human pathogen Streptococcus pneumoniae, the gene regulatory circuit leading to the transient state of competence for natural transformation is based on production of an auto-inducer that activates a positive feedback loop. About 100 genes are activated in two successive waves linked by a central alternative sigma factor ComX. This mechanism appears to be fundamental to the biological fitness of S. pneumoniae. We have developed a knowledge-based model of the competence cycle that describes average cell behavior. It reveals that the expression rates of the two competence operons, comAB and comCDE, involved in the positive feedback loop must be coordinated to elicit spontaneous competence. Simulations revealed the requirement for an unknown late com gene product that shuts of competence by impairing ComX activity. Further simulations led to the predictions that the membrane protein ComD bound to CSP reacts directly to pH change of the medium and that blindness to CSP during the post-competence phase is controlled by late DprA protein. Both predictions were confirmed experimentally.
Collapse
Affiliation(s)
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
7
|
Bauer R, Mauerer S, Grempels A, Spellerberg B. The competence system of Streptococcus anginosus and its use for genetic engineering. Mol Oral Microbiol 2018; 33:194-202. [PMID: 29290101 DOI: 10.1111/omi.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 11/30/2022]
Abstract
Streptococcus anginosus is considered a human commensal but improvements in species identification in recent years have highlighted its role as an emerging pathogen. However, our knowledge about the pathogenicity mechanisms in this species is scarce. One reason for this is the lack of published genetic manipulation techniques in the S. anginosus group. To establish a novel mutation technique we investigated the competence system of S. anginosus and created a Cre-recombinase-based mutation method that allows the generation of markerless gene deletions in S. anginosus. In silico analysis of the competence system demonstrated that S. anginosus encodes homologues for the vast majority of genes that are known to be essential for the transformation of S. pneumoniae. Analysis of transformation kinetics confirmed that S. anginosus SK52 possesses an S. pneumoniae-like competence development with a rapid increase of competence after treatment with Competence Stimulating Peptide (CSP), reaching a maximum transformation efficiency of 0.24% ± 0.08%. The combination of CSP-induced transformation and the Cre-lox system allows the efficient and fast creation of markerless gene deletions and will facilitate the investigation of the pathogenicity of S. anginosus on a genetic level.
Collapse
Affiliation(s)
- R Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - S Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - A Grempels
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Chevrel A, Mesneau A, Sanchez D, Celma L, Quevillon-Cheruel S, Cavagnino A, Nessler S, Li de la Sierra-Gallay I, van Tilbeurgh H, Minard P, Valerio-Lepiniec M, Urvoas A. Alpha repeat proteins (αRep) as expression and crystallization helpers. J Struct Biol 2018; 201:88-99. [DOI: 10.1016/j.jsb.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
|
9
|
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. Curr Top Microbiol Immunol 2017; 415:39-62. [PMID: 29026924 DOI: 10.1007/82_2017_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Collapse
|
10
|
Frutos MD, Leforestier A, Degrouard J, Zambrano N, Wien F, Boulanger P, Brasilès S, Renouard M, Durand D, Livolant F. Can Changes in Temperature or Ionic Conditions Modify the DNA Organization in the Full Bacteriophage Capsid? J Phys Chem B 2016; 120:5975-86. [PMID: 27152667 DOI: 10.1021/acs.jpcb.6b01783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We compared four bacteriophage species, T5, λ, T7, and Φ29, to explore the possibilities of DNA reorganization in the capsid where the chain is highly concentrated and confined. First, we did not detect any change in DNA organization as a function of temperature between 20 to 40 °C. Second, the presence of spermine (4+) induces a significant enlargement of the typical size of the hexagonal domains in all phages. We interpret these changes as a reorganization of DNA by slight movements of defects in the structure, triggered by a partial screening of repulsive interactions. We did not detect any signal characteristic of a long-range chiral organization of the encapsidated DNA in the presence and in the absence of spermine.
Collapse
Affiliation(s)
- Marta de Frutos
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Jéril Degrouard
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Nebraska Zambrano
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Frank Wien
- Synchrotron SOLEIL, DISCO, L'Orme des Merisiers , 91190 St Aubin, France
| | - Pascale Boulanger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Sandrine Brasilès
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Madalena Renouard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Françoise Livolant
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| |
Collapse
|