1
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Ubiquitin specific peptidase 1 promotes hepatic fibrosis through positive regulation of CXCL1 by deubiquitinating SNAIL. Dig Liver Dis 2022; 54:91-102. [PMID: 33926817 DOI: 10.1016/j.dld.2021.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatic fibrosis is attributed to an imbalance of extracellular matrix production and lysis. Human hepatic stellate cells (HSCs) have been uncovered to converge through complex interactions with hepatocytes and immune cells, causing scarring in liver damage. AIMS We aimed to investigate the expression status of ubiquitin specific peptidase 1 (USP1) and its potential mechanisms on HSCs and hepatic fibrosis. METHODS Hepatic fibrosis animal and cell models were generated using mice with carbon tetrachloride (CCl4) treatment and HSCs LX-2 with TGF-β1 treatment. Relationships among USP1, SNAIL, and CXCL1 were identified via dual-luciferase reporter gene assay, co-immunoprecipitation, and chromatin immunoprecipitation. With gain- and loss-of-experiments, CCK-8 and flow cytometry assays were employed for cell proliferation and apoptosis. RESULTS USP1 upregulated SNAIL expression through deubiquitination to increase CXCL1 expression. USP1 downregulation decreased expressions of fibrosis-related genes, suppressed proliferation, and promoted apoptosis in TGF-β1-induced LX-2 cells, which were reversed by SNAIL overexpression. The pro-fibrosis role caused by SNAIL upregulation was abolished by CXCL1 reduction. Promotive function of USP1/SNAIL/CXCL1 axis in hepatic fibrosis was further confirmed in vivo. CONCLUSION These data supported siRNA-mediated silencing of USP1 improved hepatic fibrosis through inhibition of SNAIL and CXCL1, which yields a new therapeutic target for hepatic fibrosis treatment.
Collapse
|
3
|
Goldbraikh D, Neufeld D, Eid‐Mutlak Y, Lasry I, Gilda JE, Parnis A, Cohen S. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep 2020; 21:e48791. [PMID: 32133736 PMCID: PMC7132338 DOI: 10.15252/embr.201948791] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 01/11/2023] Open
Abstract
PI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Ubiquitination of the protein kinase Akt prior to its phosphorylation is required for PI3K-Akt activity. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63-linked polyubiquitin chains on Akt to restrict PI3K-Akt-FoxO signaling in mouse muscle during prolonged starvation. DUB screening platform identified USP1 as a direct DUB for Akt, and USP1 depletion in mouse muscle increased Akt ubiquitination, PI3K-Akt-FoxO signaling, and glucose uptake during fasting. Co-immunoprecipitation and mass spectrometry identified disabled homolog-2 (Dab2), the tuberous sclerosis complex TSC1/TSC2, and PHLPP1 as USP1 bound proteins. During starvation, Dab2 is essential for Akt recruitment to USP1-TSC1-PHLPP1 complex, and for PI3K-Akt-FoxO inhibition. Surprisingly, USP1 limits TSC1 levels to sustain mTOR-mediated basal protein synthesis rates and maintain its own protein levels. We propose that Dab2 recruits Akt to USP1-TSC1-PHLPP1 complex to efficiently terminate the transmission of growth signals when cellular energy level is low.
Collapse
Affiliation(s)
- Dana Goldbraikh
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | | | - Yara Eid‐Mutlak
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | - Inbal Lasry
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | | | - Anna Parnis
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | - Shenhav Cohen
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| |
Collapse
|
4
|
López DJ, de Blas A, Hurtado M, García-Alija M, Mentxaka J, de la Arada I, Urbaneja MA, Alonso-Mariño M, Bañuelos S. Nucleophosmin interaction with APE1: Insights into DNA repair regulation. DNA Repair (Amst) 2020; 88:102809. [PMID: 32092641 DOI: 10.1016/j.dnarep.2020.102809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ander de Blas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Hurtado
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel García-Alija
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Mentxaka
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018; 1:72-86. [PMID: 30227958 PMCID: PMC6135944 DOI: 10.1016/j.isci.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Impaired pancreatic β-cell survival contributes to the reduced β-cell mass in diabetes, but underlying regulatory mechanisms and key players in this process remain incompletely understood. Here, we identified the deubiquitinase ubiquitin-specific protease 1 (USP1) as an important player in the regulation of β-cell apoptosis under diabetic conditions. Genetic silencing and pharmacological suppression of USP1 blocked β-cell death in several experimental models of diabetes in vitro and ex vivo without compromising insulin content and secretion and without impairing β-cell maturation/identity genes in human islets. Our further analyses showed that USP1 inhibition attenuated DNA damage response (DDR) signals, which were highly elevated in diabetic β-cells, suggesting a USP1-dependent regulation of DDR in stressed β-cells. Our findings highlight a novel function of USP1 in the control of β-cell survival, and its inhibition may have a potential therapeutic relevance for the suppression of β-cell death in diabetes. Genetic and chemical inhibition of USP1 promoted β-cell survival USP1 inhibitors blocked β-cell death in human islets without affecting β-cell function USP1 inhibition reduced DDR signals in stressed β-cells
Collapse
Affiliation(s)
- Kanaka Durga Devi Gorrepati
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Blaz Lupse
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Karthika Annamalai
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Ting Yuan
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Kathrin Maedler
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| | - Amin Ardestani
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| |
Collapse
|