1
|
Pan Q, Luo P, Qiu Y, Hu K, Lin L, Zhang H, Yin D, Shi C. The SETDB1-PC4-UPF1 post-transcriptional machinery controls periodic degradation of CENPF mRNA and maintains mitotic progression. Cell Death Differ 2025:10.1038/s41418-025-01465-z. [PMID: 40016337 DOI: 10.1038/s41418-025-01465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Numerous genes exhibit periodic oscillations in mRNA expression, essential for orderly cell division. Mitosis-related mRNAs fluctuate cyclically from the G2 to M phase, primarily regulated by transcription factors. However, the role of post-transcriptional regulation in this process remains unclear. Here, we demonstrated a decrease in mRNA levels of centromere protein F (CENPF) from the early to late G2 phase. SETDB1-PC4-UPF1 serves as a crucial post-transcriptional machinery, orchestrating the periodic degradation of CENPF mRNA, ensuring balanced CENP expression, proper spindle assembly, and successful mitosis. In early G2, newly synthesized CENPF mRNAs accumulate and bind to PC4, leading to SETDB1-mediated PC4 dimethylation at K35. In late G2, dimethylated PC4 interacts with UPF1 to promote deadenylation-dependent degradation of CENPF mRNAs, forming a regulatory loop for CENP homeostasis. Elevated PC4 dimethylation in hepatocellular carcinoma, coupled with increased sensitivity to taxanes upon its inhibition, suggests promising therapeutic avenues. These findings suggest a post-transcriptional quality control mechanism regulating cyclic mitotic mRNA fluctuations, providing comprehensive insights into cell cycle gene regulation dynamics.
Collapse
Affiliation(s)
- Qimei Pan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Xie Q, Kasahara K, Higo J, Takahashi T. Molecular Mechanisms of Functional Modulation of Transcriptional Coactivator PC4 via Phosphorylation on Its Intrinsically Disordered Region. ACS OMEGA 2023; 8:14572-14582. [PMID: 37125110 PMCID: PMC10134458 DOI: 10.1021/acsomega.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
To investigate the effects of phosphorylation on the function of the human positive cofactor 4 (PC4), an enhanced molecular dynamics (MD) simulation was performed. The simulation system consists of the N-terminal intrinsic disordered region (IDR) of PC4 and a complex that comprises the C-terminal acidic activation domain of a herpes simplex virion protein 16 (VP16ad) and a homodimer of the C-terminal structured core domain of PC4 (PC4ctd). An earlier report of an experimental study reported that the PC4-VP16ad interaction is modulated by incremental phosphorylation of the IDR. That report also proposed a dynamic model where phosphorylated serine residues of a segment (SEAC) in the IDR contact positively charged residues (lysin and arginine) of another segment (K-rich) in the IDR. This contact formation induced by the phosphorylation results in variation of PC4-VP16ad interaction. However, this contact formation has not yet been measured directly because it is transiently formed and because the SEAC and K-rich segments are unstructured with high flexibility. We performed two simulations to mimic the incremental phosphorylation: the IDR was not phosphorylated in one simulation and only partially phosphorylated in the other. Our simulation results indicate that the phosphorylation weakens the IDR-VP16ad contact considerably with the induction of a compact structure in the IDR. This structure was stabilized by electrostatic interactions between the phosphorylated serine residues of a segment and lysine or arginine residues of another segment in the IDR, but the conformational fluctuation of this compact structure was considerably large. Consequently, the present study supports the experimentally proposed dynamic model. Results of this study can be important for computational elucidation of the functional modulation of PC4.
Collapse
Affiliation(s)
- Qilin Xie
- Graduate
School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Junichi Higo
- Graduate
School of Information Science, University
of Hyogo, 7-1-28 minatojima
Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Takahashi
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Rojas DA, Urbina F, Solari A, Maldonado E. The Catalytic Subunit of Schizosaccharomyces pombe CK2 (Cka1) Negatively Regulates RNA Polymerase II Transcription through Phosphorylation of Positive Cofactor 4 (PC4). Int J Mol Sci 2022; 23:ijms23169499. [PMID: 36012759 PMCID: PMC9409219 DOI: 10.3390/ijms23169499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023] Open
Abstract
Positive cofactor 4 (PC4) is a transcriptional coactivator that plays important roles in transcription and DNA replication. In mammals, PC4 is phosphorylated by CK2, and this event downregulates its RNA polymerase II (RNAPII) coactivator function. This work describes the effect of fission yeast PC4 phosphorylation on RNAPII transcription in a cell extract, which closely resembles the cellular context. We found that fission yeast PC4 is strongly phosphorylated by the catalytic subunit of CK2 (Cka1), while the regulatory subunit (Ckb1) downregulates the PC4 phosphorylation. The addition of Cka1 to an in vitro transcription assay can diminish the basal transcription from the Ad-MLP promoter; however, the addition of recombinant fission yeast PC4 or Ckb1 can stimulate the basal transcription in a cell extract. Fission yeast PC4 is phosphorylated in a domain which has consensus phosphorylation sites for CK2, and two serine residues were identified as critical for CK2 phosphorylation. Mutation of one of the serine residues in PC4 does not completely abolish the phosphorylation; however, when the two serine residues are mutated, CK2 is no longer able to phosphorylate PC4. The mutant which is not phosphorylated is able to stimulate transcription even though it is previously phosphorylated by Cka1, while the wild type and the point mutant are inactivated by Cka1 phosphorylation, and they cannot stimulate transcription by RNAPII in cell extracts. Those results demonstrate that CK2 can regulate the coactivator function of fission yeast PC4 and suggests that this event could be important in vivo as well.
Collapse
Affiliation(s)
- Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Correspondence: (D.A.R.); (E.M.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (D.A.R.); (E.M.)
| |
Collapse
|
4
|
Mustafi P, Hu M, Kumari S, Das C, Li G, Kundu T. Phosphorylation-dependent association of human chromatin protein PC4 to linker histone H1 regulates genome organization and transcription. Nucleic Acids Res 2022; 50:6116-6136. [PMID: 35670677 PMCID: PMC9226532 DOI: 10.1093/nar/gkac450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.
Collapse
Affiliation(s)
- Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Mingli Hu
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandrima Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Guohong Li
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
5
|
Chen L, Liao F, Wu J, Wang Z, Jiang Z, Zhang C, Luo P, Ma L, Gong Q, Wang Y, Wang Q, Luo M, Yang Z, Han S, Shi C. Acceleration of ageing via disturbing mTOR-regulated proteostasis by a new ageing-associated gene PC4. Aging Cell 2021; 20:e13370. [PMID: 33957702 PMCID: PMC8208792 DOI: 10.1111/acel.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
Research on ageing‐associated genes is important for investigating ageing and anti‐ageing strategies. Here, we firstly reported that the human positive cofactor 4 (PC4), a multifunctional and highly conserved nucleoprotein, is accumulated and activated during ageing and causes global accelerated ageing process by disrupting proteostasis. Mechanistically, PC4 interacts with Sin3‐HDAC complex and inhibits its deacetylated activity, leads to hyper‐acetylation of the histones at the promoters of mTOR‐related genes and causes mTOR signalling activation. Accordingly, mTOR activation causes excessive protein synthesis, resulting in impaired proteostasis and accelerated senescence. These results reveal a new biological function of PC4 in vivo, recognizes PC4 as a new ageing‐associated gene and provides a genetically engineered mouse model to simulate natural ageing. More importantly, our findings also indicate that PC4 is involved in histone acetylation and serves as a potential target to improve proteostasis and delay ageing.
Collapse
Affiliation(s)
- Long Chen
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Fengying Liao
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Jie Wu
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Ziwen Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
- Department of Cardiology Geriatric Cardiovascular Disease Research and Treatment Center 252 Hospital of PLA (82nd Group Army Hospital of PLA) Baoding China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Chi Zhang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Peng Luo
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Le Ma
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Qiang Gong
- Department of Hematology Southwest Hospital Third Military Medical University Chongqing China
| | - Yang Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Qing Wang
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Min Luo
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department Chongqing General Hospital University of Chinese Academy of Sciences Chongqing China
| | - Shiqian Han
- Institute of Tropical Medicine Third Military Medical University Chongqing China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University Chongqing China
| |
Collapse
|
6
|
Ochiai K, Yamaoka M, Swaminathan A, Shima H, Hiura H, Matsumoto M, Kurotaki D, Nakabayashi J, Funayama R, Nakayama K, Arima T, Ikawa T, Tamura T, Sciammas R, Bouvet P, Kundu TK, Igarashi K. Chromatin Protein PC4 Orchestrates B Cell Differentiation by Collaborating with IKAROS and IRF4. Cell Rep 2020; 33:108517. [PMID: 33357426 DOI: 10.1016/j.celrep.2020.108517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
The chromatin protein positive coactivator 4 (PC4) has multiple functions, including chromatin compaction. However, its role in immune cells is largely unknown. We show that PC4 orchestrates chromatin structure and gene expression in mature B cells. B-cell-specific PC4-deficient mice show impaired production of antibody upon antigen stimulation. The PC4 complex purified from B cells contains the transcription factors (TFs) IKAROS and IRF4. IKAROS protein is reduced in PC4-deficient mature B cells, resulting in de-repression of their target genes in part by diminished interactions with gene-silencing components. Upon activation, the amount of IRF4 protein is not increased in PC4-deficient B cells, resulting in reduction of plasma cells. Importantly, IRF4 reciprocally induces PC4 expression via a super-enhancer. PC4 knockdown in human B cell lymphoma and myeloma cells reduces IKAROS protein as an anticancer drug, lenalidomide. Our findings establish PC4 as a chromatin regulator of B cells and a possible therapeutic target adjoining IKAROS in B cell malignancies.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| | - Mari Yamaoka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Jun Nakabayashi
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Tomokatsu Ikawa
- Division of Immunobiology, Tokyo University of Science, Yamazaki 2669, Noda 278-0022, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| |
Collapse
|
7
|
Sikder S, Kumari S, Kumar M, Sen S, Singhal NB, Chellappan S, Godbole M, Chandrani P, Dutt A, Gopinath KS, Kundu TK. Chromatin protein PC4 is downregulated in breast cancer to promote disease progression: Implications of miR-29a. Oncotarget 2019; 10:6855-6869. [PMID: 31839879 PMCID: PMC6901337 DOI: 10.18632/oncotarget.27325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023] Open
Abstract
The human transcriptional coactivator PC4 has numerous roles to play in the cell. Other than its transcriptional coactivation function, it facilitates chromatin organization, DNA damage repair, viral DNA replication, etc. Although it was found to be an essential protein in vivo, the importance of this multifunctional protein in the regulation of different cellular pathways has not been investigated in details, particularly in oncogenesis. In this study, PC4 downregulation was observed in a significant proportion of mammary tissues obtained from Breast cancer patient samples as well as in a subset of highly invasive and metastatic Breast cancer patient-derived cell lines. We have identified a miRNA, miR-29a which potentially reduce the expression of PC4 both in RNA and protein level. This miR-29a was found to be indeed overexpressed in a substantial number of Breast cancer patient samples and cell lines as well, suggesting one of the key mechanisms of PC4 downregulation. Stable Knockdown of PC4 in MCF7 cells induced its migratory as well as invasive properties. Furthermore, in an orthotopic breast cancer mice model system; we have shown that reduced expression of PC4 enhances the tumorigenic potential substantially. Absence of PC4 led to the upregulation of several genes involved in Epithelial to Mesenchymal Transition (EMT), indicating the possible mechanism of uniform tumour progression in the orthotropic mice. Collectively these data establish the role of PC4 in tumour suppression.
Collapse
Affiliation(s)
- Sweta Sikder
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sujata Kumari
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manoj Kumar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shrinka Sen
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Mukul Godbole
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Amit Dutt
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | | | - Tapas K. Kundu
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
8
|
Mondal P, Saleem S, Sikder S, Kundu TK, Biswas SC, Roy S. Multifunctional transcriptional coactivator PC4 is a global co-regulator of p53-dependent stress response and gene regulation. J Biochem 2019; 166:403-413. [PMID: 31236588 DOI: 10.1093/jb/mvz050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Human positive coactivator 4 (PC4), a multifunctional chromatin-associated protein, is known to directly interact with p53 and modulate expressions of a few p53-dependent genes. However, the role of PC4 in p53's myriad of other regulatory functions is not known. The p53-PC4 interaction was selectively perturbed by a small peptide which led to abrogation of genotoxic stress-induced up-regulation of many p53-dependent genes and reduction of apoptosis in A549 cells. Over-expression of a PC4 point mutant, incapable of binding p53, recapitulated many of the effects of the peptide. Global gene expression profiling in A549 cells, upon peptide treatment, revealed PC4's involvement in the regulation of many p53-dependent pathways, including the Hippo pathway. Introduction of the peptide in neuronal cells significantly reduced its amyloid-β-induced death. Thus, PC4 emerges as a global co-regulator of p53 and a therapeutic target against pathogeneses where the p53-dependent cell death process plays a crucial role.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biophysics, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, West Bengal
| | - Suraiya Saleem
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal
| | - Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Subhas Chandra Biswas
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, West Bengal
| |
Collapse
|
9
|
Sikder S, Kumari S, Mustafi P, Ramdas N, Padhi S, Saha A, Bhaduri U, Banerjee B, Manjithaya R, Kundu TK. Nonhistone human chromatin protein PC4 is critical for genomic integrity and negatively regulates autophagy. FEBS J 2019; 286:4422-4442. [PMID: 31169983 DOI: 10.1111/febs.14952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
Multifunctional human transcriptional positive co-activator 4 (PC4) is a bona fide nonhistone component of the chromatin and plays a pivotal role in the process of chromatin compaction and functional genome organization. Knockdown of PC4 expression causes a drastic decompaction which leads to open conformation of the chromatin, and thereby altered nuclear architecture, defects in chromosome segregation and changed epigenetic landscape. Interestingly, these defects do not induce cellular death but result in enhanced cellular proliferation, possibly through enhanced autophagic activity. Moreover, PC4 depletion confers significant resistance to gamma irradiation. Exposure to gamma irradiation further induced autophagy in these cells. Inhibition of autophagy by small molecule inhibitors as well as by silencing of a critical autophagy gene drastically reduces the ability of PC4 knockdown cells to survive. On the contrary, complementation with wild-type PC4 could reverse this phenomenon, confirming the process of autophagy as the key mechanism for radiation resistance in the absence of PC4. These data connect the unexplored role of chromatin architecture in regulating autophagy during stress conditions such as radiation.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nisha Ramdas
- Mechanobiology Institute & Department of Biological Sciences, National University of Singapore, Singapore
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arka Saha
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
10
|
Zhao Y, Zhang Y, Huang J, Wang S, Yi L, Zhang X, Xu M, Fang X, Liu J. The effect of phosphate ion on the ssDNA binding mode of MoSub1, a Sub1/PC4 homolog from rice blast fungus. Proteins 2018; 87:257-264. [PMID: 30561148 DOI: 10.1002/prot.25647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022]
Abstract
MoSub1 is an ortholog of yeast single stranded DNA binding protein Sub1 or human PC4 from rice blast fungus. All of them share a similar DNA binding region and may have similar biological roles. The well-studied Sub1/PC4 has been reported to play multiple roles in DNA metabolic processes, such as transcription and DNA repair and their DNA binding capacity is significantly affected by phosphorylation. Here, we determined the crystal structure of MoSub1 complexed with ssDNA in a phosphate solution. The crystal structure of the MoSub1-ssDNA complex was solved to a resolution of 2.04 Å. A phosphate ion at the interface of the protein-DNA interaction of the complex bridged the lys84 of the protein and two nucleotides. The DNA was bound in novel mode (L mode) in the MoSub1 complex in the presence of phosphate ions, while DNA bound in the straight mode in the absence of the phosphate ion and in U mode in the same binding motif of the PC4-ssDNA complex. The crystal structure of the complex and a small-angle X-ray scattering analysis revealed that the phosphate ion at the protein-DNA interface affected the DNA binding mode of MoSub1 to oligo-DNA and provided a new structural clue for studying its functions.
Collapse
Affiliation(s)
- Yanxiang Zhao
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China.,College of Plant Health and Medicine, and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yikan Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinguang Huang
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China.,College of Plant Health and Medicine, and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Long Yi
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China.,Nanxiong Tobacco Research Institute of Guangdong, Nanxiong, Guangdong, China
| | - Xin Zhang
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Min Xu
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junfeng Liu
- Department of Plant Pathology, and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Sub1/PC4, a multifaceted factor: from transcription to genome stability. Curr Genet 2017; 63:1023-1035. [DOI: 10.1007/s00294-017-0715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
12
|
Griffin WC, Gao J, Byrd AK, Chib S, Raney KD. A biochemical and biophysical model of G-quadruplex DNA recognition by positive coactivator of transcription 4. J Biol Chem 2017; 292:9567-9582. [PMID: 28416612 DOI: 10.1074/jbc.m117.776211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
DNA sequences that are guanine-rich have received considerable attention because of their potential to fold into a secondary, four-stranded DNA structure termed G-quadruplex (G4), which has been implicated in genomic instability and some human diseases. We have previously identified positive coactivator of transcription (PC4), a single-stranded DNA (ssDNA)-binding protein, as a novel G4 interactor. Here, to expand on these previous observations, we biochemically and biophysically characterized the interaction between PC4 and G4DNA. PC4 can bind alternative G4DNA topologies with a low nanomolar Kd value of ∼2 nm, similar to that observed for ssDNA. In consideration of the different structural features between G4DNA and ssDNA, these binding data indicated that PC4 can interact with G4DNA in a manner distinct from ssDNA. The stoichiometry of the PC4-G4 complex was 1:1 for PC4 dimer:G4 substrate. PC4 did not enhance the rate of folding of G4DNA, and formation of the PC4-G4DNA complex did not result in unfolding of the G4DNA structure. We assembled a G4DNA structure flanked by duplex DNA. We find that PC4 can interact with this G4DNA, as well as the complementary C-rich strand. Molecular docking simulations and DNA footprinting experiments suggest a model where a PC4 dimer accommodates the DNA with one monomer on the G4 strand and the second monomer bound to the C-rich strand. Collectively, these data provide a novel mode of PC4 binding to a DNA secondary structure that remains within the framework of the model for binding to ssDNA. Additionally, consideration of the PC4-G4DNA interaction could provide insight into the biological functions of PC4, which remain incompletely understood.
Collapse
Affiliation(s)
- Wezley C Griffin
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Jun Gao
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Shubeena Chib
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| |
Collapse
|
13
|
Hanley ML, Yoo TY, Sonnett M, Needleman DJ, Mitchison TJ. Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol Biol Cell 2017; 28:1444-1456. [PMID: 28404751 PMCID: PMC5449145 DOI: 10.1091/mbc.e16-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.
Collapse
Affiliation(s)
- Mariah L Hanley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701.,Department of Chemistry, Harvard University, Cambridge, MA 02138-2902
| | - Tae Yeon Yoo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| |
Collapse
|