1
|
Sarji M, Ankawa R, Yampolsky M, Fuchs Y. A near death experience: The secret stem cell life of caspase-3. Semin Cell Dev Biol 2025; 171:103617. [PMID: 40344690 DOI: 10.1016/j.semcdb.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.
Collapse
Affiliation(s)
- Mahasen Sarji
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel
| | | | - Yaron Fuchs
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel.
| |
Collapse
|
2
|
Wang T, Ran B, Luo Y, Ma J, Li J, Li P, Li M, Li D. Functional study of the ST6GAL2 gene regulating skeletal muscle growth and development. Heliyon 2024; 10:e37311. [PMID: 39296044 PMCID: PMC11407927 DOI: 10.1016/j.heliyon.2024.e37311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
ST6GAL2, a member of the sialoglycosyltransferase family, primarily localizes within the cellular Golgi apparatus. However, the role of the ST6GAL2 gene in skeletal muscle growth and development remains elusive. In this study, the impact of the ST6GAL2 gene on the proliferation, differentiation, and apoptosis of primary chicken myoblasts at the cellular level was investigated. Quantitative fluorescent PCR was used to measure the expression levels of genes. Subsequently, using gene knockout mice, we assessed its effects on skeletal muscle growth and development in vivo. Our findings reveal that the ST6GAL2 gene promotes the expression of cell cycle and proliferation-related genes, including CCNB2 and PCNA, and apoptosis-related genes, such as Fas and Caspase-9. At the individual level, double knockout of ST6GAL2 inhibited the formation of both fast and slow muscle fibers in the quadriceps, extensor digitorum longus, and tibial anterior muscle, while promoting their formation in the gastrocnemius and soleus. These results collectively demonstrate that the ST6GAL2 gene facilitates the proliferation, apoptosis, and fusion processes of primary chicken myoblasts. Additionally, it promotes the enlargement of cross-sectional muscle fiber areas and regulates the formation of fast and slow muscle fibers at the individual level, albeit inhibiting muscle fusion. This study provides valuable insights into the role of the ST6GAL2 gene in promoting proliferation of skeletal muscle.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Bo Ran
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yingyu Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu, 610000, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
3
|
Benada J, Alsowaida D, Megeney LA, Sørensen CS. Self-inflicted DNA breaks in cell differentiation and cancer. Trends Cell Biol 2023; 33:850-859. [PMID: 36997393 DOI: 10.1016/j.tcb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark
| | - Dalal Alsowaida
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark.
| |
Collapse
|
4
|
Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 2023; 30:1900-1915. [PMID: 37400716 PMCID: PMC10406879 DOI: 10.1038/s41418-023-01177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Université Pierre et Marie Curie (Sorbonne Universities, ED515), Paris, France
- Institut de Radioprotection et de Sûrété Nucléaire (IRSN), Radiobiology of Accidental Exposure Laboratory (PSE-SANTE/SERAMED/LRAcc), B.P. 17, 92262 Fontenay-aux-Roses, Cedex, France
| | - Benjamin Montagne
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France.
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France.
| |
Collapse
|
5
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
6
|
Earle AJ, Kirby TJ, Fedorchak GR, Isermann P, Patel J, Iruvanti S, Moore SA, Bonne G, Wallrath LL, Lammerding J. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. NATURE MATERIALS 2020; 19:464-473. [PMID: 31844279 PMCID: PMC7102937 DOI: 10.1038/s41563-019-0563-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2019] [Indexed: 05/19/2023]
Abstract
Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.
Collapse
Affiliation(s)
- Ashley J Earle
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Tyler J Kirby
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gregory R Fedorchak
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Philipp Isermann
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jineet Patel
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Sushruta Iruvanti
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS 974, Center of Research in Myology, Association Institute of Myology, Paris, France
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Wong WW, Jackson RK, Liew LP, Dickson BD, Cheng GJ, Lipert B, Gu Y, Hunter FW, Wilson WR, Hay MP. Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochem Pharmacol 2019; 169:113641. [PMID: 31541630 DOI: 10.1016/j.bcp.2019.113641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) plays a key role in repair of radiation-induced DNA double strand breaks (DSB) by non-homologous end-joining. DNA-PK inhibitors (DNA-PKi) are therefore efficient radiosensitisers, but normal tissue radiosensitisation represents a risk for their use in radiation oncology. Here we describe a novel prodrug, SN38023, that is metabolised to a potent DNA-PKi (IC87361) selectively in radioresistant hypoxic cells. DNA-PK inhibitory potency of SN38023 was 24-fold lower than IC87361 in cell-free assays, consistent with molecular modelling studies suggesting that SN38023 is unable to occupy one of the predicted DNA-PK binding modes of IC87361. One-electron reduction of the prodrug by radiolysis of anoxic formate solutions, and by metabolic reduction in anoxic HCT116/POR cells that overexpress cytochrome P450 oxidoreductase (POR), generated IC87361 efficiently as assessed by LC-MS. SN38023 inhibited radiation-induced Ser2056 autophosphorylation of DNA-PK catalytic subunit and radiosensitised HCT116/POR and UT-SCC-54C cells selectively under anoxia. SN38023 was an effective radiosensitiser in anoxic HCT116 spheroids, demonstrating potential for penetration into hypoxic tumour tissue, but in spheroid co-cultures of high-POR and POR-null cells it showed no evidence of bystander effects resulting from local diffusion of IC87361. Pharmacokinetics of IC87361 and SN38023 at maximum achievable doses in NIH-III mice demonstrated sub-optimal exposure of UT-SCC-54C tumour xenografts and did not provide significant tumour radiosensitisation. In conclusion, SN38023 has potential for exploiting hypoxia for selective delivery of a potent DNA-PKi to the most radioresistant subpopulation of cells in tumours. However, prodrugs providing improved systemic pharmacokinetics and that release DNA-PKi that elicit bystander effects are needed to maximise therapeutic utility.
Collapse
Affiliation(s)
- Way Wua Wong
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Rosanna K Jackson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Lydia P Liew
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Gary J Cheng
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
8
|
Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J 2016; 284:1160-1170. [PMID: 27865056 DOI: 10.1111/febs.13970] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
Abstract
Organismal development and function requires multiple and accurate signal transduction pathways to ensure that proper balance between cell proliferation, differentiation, inactivation, and death is achieved. Cell death via apoptotic caspase signal transduction is extensively characterized and integral to this balance. Importantly, the view of apoptotic signal transduction has expanded over the previous decades. Subapoptotic caspase signaling has surfaced as mechanism that can promote the adoption of a range of cellular fates. An emerging mechanism of subapoptotic caspase signaling is the activation of the caspase-activated DNase (CAD) through controlled cleavage of the inhibitor of CAD (ICAD). CAD-induced DNA breaks incite a DNA damage response, frequently invoking p53 signaling, that transduces a change in cell fate. Cell differentiation and senescence are fates demonstrated to arise from CAD-induced DNA breaks. Furthermore, an apparent consequence of CAD activity is also emerging, as a potential source of oncogenic mutations. This review will discuss the mechanisms underlying CAD-induced DNA breaks and highlight how CAD activity promotes diverse cell fates.
Collapse
Affiliation(s)
- Brian D Larsen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| |
Collapse
|