1
|
Senoo K, Fukushima K, Yamamoto H, Hamaguchi A, Suganami A, Takano H, Yamashita M, Regan JW, Tamura Y, Fujino H. Potent activity of prostaglandin J2 on prostanoid DP receptors. J Biol Chem 2025:108523. [PMID: 40254255 DOI: 10.1016/j.jbc.2025.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025] Open
Abstract
Prostaglandin D2 (PGD2), an anti-inflammatory mediator, is acting through Gs-protein coupled D-type prostanoid (DP) receptors. DP receptors are not extensively distributed; in tissues, they are the least abundant among members of the prostanoid receptor family, whereas their primary ligand PGD2 is the main prostanoid in most tissues. PGD2 is dehydrated or isomerized to a number of metabolites enzymatically or non-enzymatically. To understand why many metabolites of PGD2 are produced via different pathways, regular cell-based experiments, Black/Leff operational model calculations, and in silico simulations were utilized. Here we show, among the 5 metabolites of PGD2, prostaglandin J2 (PGJ2) was the most potent metabolite for DP receptors, particularly in the cAMP signaling pathway. This result was attributed to PGJ2 forming an extra, and/or stronger hydrogen bond by more negatively charged carbonyl in the cyclopentene ring with DP receptors than PGD2. Therefore, when PGD2 is released into the blood, it would activate DP receptors, which are then continuously activated by PGJ2 to sustain the DP receptor/cAMP-mediated signaling pathway. Thus, the anti-inflammatory effects of PGD2 may be taken over/out competed and/or even enhanced by PGJ2. Here, PGJ2 was found to be a standout mediator of cAMP-mediated signaling pathway, that induces more potent and prolonged DP receptor-activities as a biased ligand, possibly for resolving the inflammatory reaction. Moreover, since each metabolite showed different property, these results provide insight into why many metabolites of PGD2 are produced, and the miscellaneous physiological roles induced by the main prostanoid in most tissues through the least abundant DP receptors.
Collapse
Affiliation(s)
- Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Hitomi Yamamoto
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Ayaka Hamaguchi
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Harumi Takano
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Mayu Yamashita
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
2
|
Fujino H. The Biased Activities of Prostanoids and Their Receptors: Review and Beyond. Biol Pharm Bull 2022; 45:684-690. [PMID: 35650096 DOI: 10.1248/bpb.b21-01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of β-arrestin, a new concept/viewpoint has arisen in G-protein coupled receptor (GPCR)-mediated signaling. The Lock and Key concept of GPCR was previously recognized as basically a single- or mono-originated pathway activated from a single receptor. However, the new concept/viewpoint allows for many- or more-than-one-originated pathways activated from a single receptor; namely, biased activities. It is well-recognized that prostanoids exhibit preferences for their corresponding cognate receptors, while promiscuous cross-reactivities have also been reported among endogenous prostanoids and their receptor family. However, of particular interest, such cross-reactivities have led to reports of their physiologically significant roles. Thus, this review discusses and considers that the endogenous prostanoids are not showing random cross-reactivities but what are showing important physiological and pathological activities as biased ligands. Moreover, why and how the biased activities are evoked by endogenous structurally similar prostanoid ligands are discussed. Furthermore, when the biased activities of endogenous prostanoids first arose is also discussed and considered. These biased activities of endogenous prostanoids are also discussed from the perspective that they may provide many benefits and/or disadvantages for all living things, any-where on this planet, who/which are utilizing, had utilized, and will utilize the prostanoids and their receptor system, as a marked driving force for evolution.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
3
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Okura I, Hasuoka N, Senoo K, Suganami A, Fukushima K, Regan JW, Mashimo M, Murayama T, Tamura Y, Fujino H. The differential functional coupling of phosphodiesterase 4 to human DP and EP2 prostanoid receptors stimulated with PGD 2 or PGE 2. Pharmacol Rep 2021; 73:946-953. [PMID: 33786738 DOI: 10.1007/s43440-021-00247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human DP and EP2 receptors are two of the most homologically related receptors coupling with Gαs-protein, which stimulate adenylyl cyclase to produce cAMP. Indeed, both receptors are considered to be generated by tandem duplication. It has been reported that other highly homologous and closely related β1- and β2-adrenergic receptors interact distinctly with and differentially regulate cAMP-specific phosphodiesterase (PDE) 4 recruitment. METHODS First, we focused on the cAMP degradation pathways of DP and EP2 receptors stimulated by prostaglandin (PG) D2 or PGE2 using HEK cells stably expressing either human DP receptors or EP2 receptors. Then, distances between ligands and amino acids of the receptors were evaluated by molecular dynamics (MD) analysis. RESULTS We found that PGD2/EP2 receptors exerted a greater effect on PDE4 activity than PGE2/EP2 receptors. Moreover, by MD analysis, either the PGD2 or EP2 receptor was moved and the distance was shortened between them. According to the results, DP receptors retain reactivity for PGE2, but EP2 receptors may be activated only by PGE2, at least in terms of cAMP formation, through the differential functional coupling of PDE4 probably with β-arrestin. CONCLUSION Since DP receptors and EP2 receptors are considered to be duplicated genes, DP receptors may still be in a rapid evolutionary stage as a duplicated copy of EP2 receptors and have not yet sufficient selectivity for their cognate ligand, PGD2.
Collapse
Affiliation(s)
- Iori Okura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Nanae Hasuoka
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0311, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
5
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
6
|
Stochmal A, Czuwara J, Zaremba M, Rudnicka L. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications. Arch Dermatol Res 2021; 313:783-791. [PMID: 33433715 DOI: 10.1007/s00403-020-02172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Adiponectin, resistin and leptin belong to adipokines, a group of molecules secreted mainly by the adipose tissue, which impaired expression may be a missing link between various manifestations of systemic sclerosis. Adiponectin, which is also released in small amounts by the endothelium, possesses anti-inflammatory, anti-fibrotic and protective against endothelial injury properties. Both leptin and resistin exhibit features which are contradictory to adiponectin, as they trigger inflammation and the activation of skin fibroblasts. Epoprostenol is a prostaglandin analogue with powerful vasodilator activity and inhibitory effect on platelet aggregation. The aim of the study was to evaluate whether epoprostenol may have an effect on serum adipokine levels in patients with systemic sclerosis. METHODS A total of 27 patients were included in the study and received epoprostenol intravenously (25 µg of per day for 3 consecutive days). Serum concentrations of total adiponectin, resistin and leptin were assessed with enzyme-linked immunosorbent essay (R&D Systems, Minneapolis, MN, USA). RESULTS In all SSc patients, the basal level of adiponectin was significantly lower compared to healthy controls (mean 6.00 [Formula: see text] 2.81 μg/ml vs. 8.8 [Formula: see text] 4.3 μg/ml, p = 0.02) and basal level of resistin (mean 11.12 [Formula: see text] 3.36 ng/ml vs. 8.54 [Formula: see text] 3.07 ng/ml p = 0.02) was significantly higher than in the control group. The serum concentration of adiponectin increased significantly after treatment with epoprostenol (6.00 [Formula: see text] 2.81 μg/ml vs 9.29 [Formula: see text] 6.05 μg/ml; P = 0.002). The level of resistin and leptin remained unchanged. CONCLUSION Epoprostenol infusions up-regulate the serum concentration of adiponectin in patients with systemic sclerosis. In our opinion, future studies on treatments in systemic sclerosis should address the issue of their effect on adipokine metabolism.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Hermi F, Gómez-Abellán V, Pérez-Oliva AB, García-Moreno D, López-Muñoz A, Sarropoulou E, Arizcun M, Ridha O, Mulero V, Sepulcre MP. The molecular, functional and phylogenetic characterization of PGE 2 receptors reveals their different roles in the immune response of the teleost fish gilthead seabream (Sparus aurata L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103803. [PMID: 32738336 DOI: 10.1016/j.dci.2020.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Prostaglandin E2 (PGE2) plays an important role in immune activities in teleost fish, including seabream. However, receptors involved in PGE2 signaling, as well as the pathways activated downstream, are largely unknown. In this study, one ortholog of mammalian PTGER1, PTGER3 and PTGER4, and two of PTGER2 (Ptger2a and Ptger2b) were identified and characterized in gilthead seabream. In silico analysis showed that all these receptors possessed the organization domain of G protein-coupled receptors, with the exception of Ptger2b. The corresponding in vivo studies revealed that they were expressed in all the tissues examined, the highest mRNA levels of ptger1 and ptger3 being observed in the spleen and of ptger2a and ptger4 in the blood. Bacterial infection induced higher mRNA levels of ptger2a, ptger3 and ptger4 in peritoneal exudate (the site of bacterial injection). In addition, head kidney acidophilic granulocytes and macrophages displayed different ptger1, ptger2a, ptger3 and ptger4 expression profiles. Furthermore, in macrophages the expression of the receptors was weakly affected by stimulation with bacterial DNA or with PGE2, while in acidophilic granulocytes stimulation resulted in the upregulation of ptger2a and ptger4. Taken together, these results suggest different roles for seabream PGE2 receptors in the regulation of the immune responses.
Collapse
Affiliation(s)
- Fatma Hermi
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences of Bizerte, Jarzouna - Bizerte, 7021, University of Carthage, Tunis, Tunisia; Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Victoria Gómez-Abellán
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), 30860, Murcia, Spain
| | - Oueslati Ridha
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences of Bizerte, Jarzouna - Bizerte, 7021, University of Carthage, Tunis, Tunisia
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain.
| |
Collapse
|
8
|
Fujino H. Why PGD 2 has different functions from PGE 2. Bioessays 2020; 43:e2000213. [PMID: 33165991 DOI: 10.1002/bies.202000213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Prostaglandin (PG) D2 and PGE2 are positional isomers; however, they sometimes exhibit opposite physiological functions, such as in cancer development. Because DP receptors are considered to be a duplicated copy of EP2 receptors, PGD2 and PGE2 cross-react with both receptors. These prostanoids may act as biased agonists for each receptor. In reviewing this field, a hypothesis was proposed to explain the opposed effects of these prostanoids from the viewpoints of the evolution of, mutations in, and biased activities of their receptors. Previous findings showing more mutations/variations in DP receptors than EP2 receptors among individuals worldwide indicate that DP receptors are still in a rapid evolutionary stage. The opposing effects of these prostanoids on cancer development may be attributed to the biased activity of PGE2 for DP receptors, which may incidentally develop during the process of the old ligand, PGE2 gaining selectivity to newly diverged DP receptors.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Rittchen S, Rohrer K, Platzer W, Knuplez E, Bärnthaler T, Marsh LM, Atallah R, Sinn K, Klepetko W, Sharma N, Nagaraj C, Heinemann A. Prostaglandin D 2 strengthens human endothelial barrier by activation of E-type receptor 4. Biochem Pharmacol 2020; 182:114277. [PMID: 33038299 DOI: 10.1016/j.bcp.2020.114277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Life-threatening inflammatory conditions such as acute respiratory distress syndrome or sepsis often go hand in hand with severe vascular leakage. During inflammation, endothelial cell integrity and intact barrier function are crucial to limit leukocyte and plasma extravasation. Prostaglandin D2 (PGD2) is a potent inflammatory lipid mediator with vasoactive properties. Previous studies suggest that PGD2 is involved in the regulation of endothelial barrier function; however, it is unclear whether this is also true for primary human pulmonary microvascular endothelial cells. Furthermore, as PGD2 is a highly promiscuous ligand, we set out to determine which receptors are important in human pulmonary endothelial cells. In the current study, we found that PGD2 and the DP1 agonist BW245c potently strengthened pulmonary and dermal microvascular endothelial cell barrier function and protected against thrombin-induced barrier disruption. Yet surprisingly, these effects were mediated only to a negligible extent via DP1 receptor activation. In contrast, we observed that the EP4 receptor was most important and mediated the barrier enhancement by PGD2 and BW245c. Stimulation with PGE2 or PGD2 reduced AKT phosphorylation which could be reversed by prior blockade of EP4 receptors. These data demonstrate a novel mechanism by which PGD2 may modulate inflammation and emphasizes the role of EP4 receptors in human endothelial cell function.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Kathrin Rohrer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|
10
|
Endo S, Suganami A, Fukushima K, Senoo K, Araki Y, Regan JW, Mashimo M, Tamura Y, Fujino H. 15-Keto-PGE 2 acts as a biased/partial agonist to terminate PGE 2-evoked signaling. J Biol Chem 2020; 295:13338-13352. [PMID: 32727851 DOI: 10.1074/jbc.ra120.013988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin E2 (PGE2) is well-known as an endogenous proinflammatory prostanoid synthesized from arachidonic acid by the activation of cyclooxygenase-2. E type prostanoid (EP) receptors are cognates for PGE2 that have four main subtypes: EP1 to EP4. Of these, the EP2 and EP4 prostanoid receptors have been shown to couple to Gαs-protein and can activate adenylyl cyclase to form cAMP. Studies suggest that EP4 receptors are involved in colorectal homeostasis and cancer development, but further work is needed to identify the roles of EP2 receptors in these functions. After sufficient inflammation has been evoked by PGE2, it is metabolized to 15-keto-PGE2 Thus, 15-keto-PGE2 has long been considered an inactive metabolite of PGE2 However, it may have an additional role as a biased and/or partial agonist capable of taking over the actions of PGE2 to gradually terminate reactions. Here, using cell-based experiments and in silico simulations, we show that PGE2-activated EP4 receptor-mediated signaling may evoke the primary initiating reaction of the cells, which would take over the 15-keto-PGE2-activated EP2 receptor-mediated signaling after PGE2 is metabolized to 15-keto-PGE2 The present results shed light on new aspects of 15-keto-PGE2, which may have important roles in passing on activities to EP2 receptors from PGE2-stimulated EP4 receptors as a "switched agonist." This novel mechanism may be significant for gradually terminating PGE2-evoked inflammation and/or maintaining homeostasis of colorectal tissues/cells functions.
Collapse
Affiliation(s)
- Suzu Endo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yumi Araki
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
11
|
Araki Y, Suganami A, Endo S, Masuda Y, Fukushima K, Regan JW, Murayama T, Tamura Y, Fujino H. PGE1and E3show lower efficacies than E2to β-catenin-mediated activity as biased ligands of EP4 prostanoid receptors. FEBS Lett 2017; 591:3771-3780. [DOI: 10.1002/1873-3468.12878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yumi Araki
- Department of Molecular Pharmacology; Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences; Tokushima University; Japan
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; Chiba University; Japan
| | - Akiko Suganami
- Department of Bioinformatics; Graduate School of Medicine; Chiba University; Japan
| | - Suzu Endo
- Department of Molecular Pharmacology; Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences; Tokushima University; Japan
| | - Yuta Masuda
- Department of Molecular Pharmacology; Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences; Tokushima University; Japan
| | - Keijo Fukushima
- Department of Molecular Pharmacology; Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences; Tokushima University; Japan
| | - John W. Regan
- Department of Pharmacology and Toxicology; College of Pharmacy; The University of Arizona; Tucson AZ USA
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; Chiba University; Japan
| | - Yutaka Tamura
- Department of Bioinformatics; Graduate School of Medicine; Chiba University; Japan
| | - Hiromichi Fujino
- Department of Molecular Pharmacology; Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences; Tokushima University; Japan
| |
Collapse
|