1
|
Allboani A, Kar S, Kavdia M. Computational modeling of neuronal nitric oxide synthase biochemical pathway: A mechanistic analysis of tetrahydrobiopterin and oxidative stress. Free Radic Biol Med 2024; 222:625-637. [PMID: 39004235 DOI: 10.1016/j.freeradbiomed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Neuronal cell dysfunction plays an important role in neurodegenerative diseases. Oxidative stress can disrupt the redox balance within neuronal cells and may cause neuronal nitric oxide synthase (nNOS) to uncouple, contributing to the neurodegenerative processes. Experimental studies and clinical trials using nNOS cofactor tetrahydrobiopterin (BH4) and antioxidants in neuronal cell dysfunction have shown inconsistent results. A better mechanistic understanding of complex interactions of nNOS activity and oxidative stress in neuronal cell dysfunction is needed. In this study, we developed a computational model of neuronal cell using nNOS biochemical pathways to explore several key mechanisms that are known to influence neuronal cell redox homeostasis. We studied the effects of oxidative stress and BH4 synthesis on nNOS nitric oxide production and biopterin ratio (BH4/total biopterin). Results showed that nNOS remained coupled and maintained nitric oxide production for oxidative stress levels less than 230 nM/s. The results showed that neuronal oxidative stress above 230 nM/s increased the degree of nNOS uncoupling and introduced instability in the nitric oxide production. The nitric oxide production did not change irrespective of initial biopterin ratio of 0.05-0.99 for a given oxidative stress. Oxidative stress resulted in significant reduction in BH4 levels even when nitric oxide production was not affected. Enhancing BH4 synthesis or supplementation improved nNOS coupling, however the degree of improvement was determined by the levels of oxidative stress and BH4 synthesis. The results of our mechanistic analysis indicate that there is a potential for significant improvement in neuronal dysfunction by simultaneously increasing BH4 levels and reducing cellular oxidative stress.
Collapse
Affiliation(s)
- Amnah Allboani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Deng C, Wang S, Niu Z, Ye Y, Gao L. Newly established LC-MS/MS method for measurement of plasma BH4 as a predictive biomarker for kidney injury in diabetes. Free Radic Biol Med 2022; 178:1-6. [PMID: 34808334 DOI: 10.1016/j.freeradbiomed.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The clinical research on BH4 is limited because of the difficulties on its measurement. In this study, we used our own established LC-MS/MS method to examine the plasma BH4 levels in diabetes to determine whether it could be used as a biomarker for the prediction of kidney injury in those patients. METHODS Hospitalized diabetes patients in Renmin Hospital of Wuhan University from Jan to Aug 2021 were recruited. To assess the association between plasma BH4 with ACR or eGFR in diabetes, a total of 142 patients with type 2 diabetes (T2DM) were enrolled. They were divided into three groups by albuminuria levels: normoalbuminuria (n = 68), microalbuminuria (n = 48), and macroalbuminuria (n = 26) according to ACR; or into two groups by eGFR: eGFR≥90 or eGFR<90 ml/min for correlation and logistic regression analysis. Plasma BH4 level was measured by LC-MS/MS along with other biochemical indices. RESULTS Plasma BH4 concentrations were decreased as ACR progressed. BH4 (r = -0.55, P < 0.001) and 2h C-Peptide (CP-2h) (r = -0.248, P = 0.003) levels were negatively correlated with ACR. Moreover, multivariable logistic regression analysis showed BH4 concentrations (B = -0.468, P < 0.001) and CP-2h (B = -0.257, P = 0.028) were independently associated with ACR progression. ROC curve showed that BH4 level has a predictive value on ACR (95%CI 0.686-0.841, sensitivity 69.1%, specificity 73%). Moreover, in diabetes patients with eGFR≥90 ml/min, plasma BH4 level (P = 0.008) is higher than those in diabetes with eGFR<90 ml/min and BH4 was remained independently associated with eGFR after multivariable logistic regression analysis (B = -0.193, P = 0.048). CONCLUSION Our established LC-MS/MS method could be used on human plasma BH4 measurements and our data suggested that BH4 level can be used as a biomarker for kidney injury in diabetes indicated by its association with ACR progression and early renal function decline.
Collapse
Affiliation(s)
- Chunxia Deng
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Zhili Niu
- Department of Clinic Laboratory, Renmin Hospital of Wuhan University, China
| | - Yahong Ye
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
3
|
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19:591-609. [PMID: 32744952 PMCID: PMC8573752 DOI: 10.2174/1570159x18666200729103529] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
Collapse
Affiliation(s)
- H. Fanet
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - L. Capuron
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - N. Castanon
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - F. Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - S. Vancassel
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| |
Collapse
|
4
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
5
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
6
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Stuehr DJ, Haque MM. Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol 2019; 176:177-188. [PMID: 30402946 PMCID: PMC6295403 DOI: 10.1111/bph.14533] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
This review briefly summarizes what was known about NOS enzymology at the time of the Nobel Prize award in 1998 and then discusses from the author's perspective some of the advances in NOS enzymology over the subsequent 20 years, focused on five aspects: the maturation process of NOS enzymes and its regulation; the mechanism of NO synthesis; the redox roles played by the 6R-tetrahydrobiopterin cofactor; the role of protein conformational behaviour in enabling NOS electron transfer and its regulation by NOS structural elements and calmodulin, and the catalytic cycling pathways of NOS enzymes and their influence on NOS activity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research InstituteThe Cleveland ClinicClevelandOHUSA
| | | |
Collapse
|
8
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
9
|
Yuan TF, Huang HQ, Gao L, Wang ST, Li Y. A novel and reliable method for tetrahydrobiopterin quantification: Benzoyl chloride derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Free Radic Biol Med 2018; 118:119-125. [PMID: 29501564 DOI: 10.1016/j.freeradbiomed.2018.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 01/15/2023]
Abstract
Tetrahydrobiopterin (BH4) is a crucial cofactor for nitric oxide synthase, acylglycerol mono-oxygenase and aromatic amino acids hydroxylases. Its significant function for redox pathways in vivo attracted much attention for long. However, because of the oxidizable and substoichiometric nature, analysis of BH4 has never been truly achieved with adequate sensitivity and applicability. In the present work, we pioneeringly stabilized BH4 by derivatizing the active secondary amine on five-position with benzoyl chloride (BC). Benefiting from the favorable chemical stability and excellent mass spectrometric sensitivity of the product (BH4-BC), ultra-sensitive and reliable quantification of endogenous BH4 in plasma was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In such methodology, BH4-BC-d5 was introduced as stable isotopic internal standard. And the limit of quantification (LOQ) could reach 0.02 ng mL-1. In the end, after investigation of plasma BH4 in healthy volunteers (n = 38), we found that the levels of BH4 were significantly and negatively correlated to age. Comparing with all the other existed strategies, the present method was obviously superior in sensitivity, specificity and practical applicability. It could be expected that this work could largely promote the future studies in BH4-related fields.
Collapse
Affiliation(s)
- Teng-Fei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Qi Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling Gao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Ting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Vasquez-Vivar J, Shi Z, Luo K, Thirugnanam K, Tan S. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy. Redox Biol 2017; 13:594-599. [PMID: 28803128 PMCID: PMC5554922 DOI: 10.1016/j.redox.2017.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
Abstract
Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed.
Collapse
Affiliation(s)
- Jeannette Vasquez-Vivar
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Zhongjie Shi
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA
| | - Kehuan Luo
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA
| | - Karthikeyan Thirugnanam
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sidhartha Tan
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA.
| |
Collapse
|