1
|
Bhuiyan AI, Rathod P, Ghoshal S, Dana D, Das T, Li G, Dickson AA, Rafi F, Subramaniam GS, Fath KR, Paroly S, Chang EJ, Pathak SK. Clickable, selective, and cell-permeable activity-based probe of human cathepsin B - Minimalistic approach for enhanced selectivity. Bioorg Chem 2021; 117:105463. [PMID: 34753058 DOI: 10.1016/j.bioorg.2021.105463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Human cathepsin B is a cysteine-dependent protease whose roles in both normal and diseased cellular states remain yet to be fully delineated. This is primarily due to overlapping substrate specificities and lack of unambiguously annotated physiological functions. In this work, a selective, cell-permeable, clickable and tagless small molecule cathepsin B probe, KDA-1, is developed and kinetically characterized. KDA-1 selectively targets active site Cys25 residue of cathepsin B for labeling and can detect active cellular cathepsin B in proteomes derived from live human MDA-MB-231 breast cancer cells and HEK293 cells. It is anticipated that KDA-1 probe will find suitable applications in functional proteomics involving human cathepsin B enzyme.
Collapse
Affiliation(s)
- Ashif I Bhuiyan
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Pratikkumar Rathod
- Laguardia Community College, 31-10 Thomson Ave, Long Island City, NY 11101, USA
| | - Sarbani Ghoshal
- Department of Biological Sc. and Geology, QCC-CUNY, Bayside, NY, USA
| | - Dibyendu Dana
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Tuhin Das
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Guoshen Li
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Anna A Dickson
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Faiza Rafi
- Bard High School Early College Queens, 30-20 Thomson Avenue, Long Island City, NY 11101, USA
| | - Gopal S Subramaniam
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Karl R Fath
- Queens College of The City University of New York, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Suneeta Paroly
- Bard High School Early College Queens, 30-20 Thomson Avenue, Long Island City, NY 11101, USA
| | - Emmanuel J Chang
- Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA; York College of the City University of New York, Department of Chemistry, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K Pathak
- Queens College of The City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA; Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY 10016, USA.
| |
Collapse
|
2
|
Pascual Alonso I, Rivera Méndez L, Valdés-Tresanco ME, Bounaadja L, Schmitt M, Arrebola Sánchez Y, Alvarez Lajonchere L, Charli JL, Florent I. Biochemical evidences for M1-, M17- and M18-like aminopeptidases in marine invertebrates from Cuban coastline. Z NATURFORSCH C 2020; 75:397-407. [PMID: 32609656 DOI: 10.1515/znc-2019-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Laura Rivera Méndez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba.,Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Lotfi Bounaadja
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Marjorie Schmitt
- Laboratoire d'Innovation Moléculaire et Applications - Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR7042, Mulhouse, France
| | | | - Luis Alvarez Lajonchere
- Museum of Natural History Felipe Poey, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
3
|
Affiliation(s)
- Andreas O. Helbig
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
5
|
Martin SJ. The FEBS Journal in 2018 - putting a bit of color in your life, and your figures. FEBS J 2018; 285:4-7. [PMID: 29314600 DOI: 10.1111/febs.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seamus Martin holds the Smurfit Chair of Medical Genetics at the Smurfit Institute of Genetics, Trinity College Dublin, Ireland. He works on all aspects of cell death control and is especially interested in the links between cell death, cell stress and inflammation. He received the GlaxoSmithKline Award of The Biochemical Society (2006) and The RDS-Irish Times Boyle Medal (2015) for his work on the role of caspases in apoptosis and was elected to the Royal Irish Academy in 2006 and EMBO in 2009. He is the Editor-in-Chief of The FEBS Journal since 2014.
Collapse
Affiliation(s)
- Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, Trinity College, Dublin, Ireland
| |
Collapse
|